

Modeling of articular cartilage growth using COMSOL

By:

Krishnagoud Manda &
Anders Eriksson

KTH Mechanics, Royal Institute of Technology, Stockholm, Sweden

Overview of the presentation

- Motivation
- Cartilage material modeling
- Biphasic implementation in COMSOL
- Cartilage growth model
- Results and conclusions
- Future work

Motivation

- Articular cartilage is avascular load bearing tissue in the joints
- Metal implants proved as a better alternative: Animal and FE models
- The cartilage seen growing onto the implant
 - We believe that the growth is mechanically stimulated around implant
- Analytical modeling of biological growth is challenging
- Direct clinical impact

Cartilage structure

- Articular cartilage: anisotropic, multiphasic, nonlinear time dependent
- Biphasic → Incompressible Fluid + Solid

- Volume fraction, $\phi_i = \frac{dV_i}{dV}$, i = s, f, $\phi_s + \phi_f = 1$
- Total stress, $\sigma^{tot} = \sigma^{fluid} + \sigma^{solid}$
- Continuity: $\nabla \cdot \overrightarrow{v_S} \nabla \cdot (k\nabla p) = 0$

Fig.: Collagen orientation in cartilage

Human knee geometry

Fig: Axisymmetric representation of human knee condyle, adopted and modified from Wilson at al., 2005

- Geometry modified to include implant of 10mm size
- Isotropic cartilage, transversely isotropic meniscus, elastic bones

Biphasic implementation in COMSOL

- Biphasic equivalent to Poroelastic
- Solid matrix-stress equilibrium equation

•
$$\rho_f S \frac{\partial p}{\partial t} + \nabla \cdot \left[-\frac{k}{\mu} (\nabla p + \rho_f g \nabla D) \right] = -\rho_f \alpha_B \frac{\partial \epsilon_{vol}}{\partial t}$$

- Boundary conditions
 - In $\partial_t \beta$: $\sigma^T \cdot n = \bar{t}$, In $\partial_u \beta$: $u = \bar{u}$
- u p formulation

Biphasic implementation in COMSOL

Porosity and permeability are strain dependent

•
$$\epsilon_p = \frac{\epsilon_{p0} + e_{vol}}{1 + e_{vol}}$$
,

•
$$k = k_0 \left(\frac{1+e}{1+e_0}\right)^M$$
, $e = \frac{\phi_f}{\phi_s}$

- The structural respective contact have been defined
- Fluid is free to flow on non-contacting surfaces
- Axial ramp compressive disp. applied on femoral top, tibial bottom plane is fixed
- Growth is introduced by thermal growth over time

Cartilage growth-Fe model

- Two constituents of solid matrix (PG's and collagen) are individually growing
- Growing elastic materials theory

Fig: Flow chart for growth during on cycle

Results and conclusions

Fig: Total pressure in a model without implant (left), displacement in model with implant (right), at 1 sec

- Model without implant is validated with literature
- Cartilage growing onto the implant, mechanical loading also contributes to it
- Thermal growth was uniform.
- Results are not so clinically relevant, as growth happens based on the stress level

Future work

- Dynamic mechanical loading during day and growth during night, for one year period
- Time scales for growth and mech loading are very different
- Aggressive constitutive relations of growth of constituents in solid matrix: Model becomes TRIPHASIC
- Investigate how mechanical loading affects growth, and implant size and depth on the growth
- Model will be validated with the available images from animal experiments

