Presented at the 2011 COMSOL Conference in Boston, MA

The Transient Modeling of Single-Bubble Nucleate Boiling in a Sub-Cooled Liquid Using an ALE Moving Mesh

> Christopher J. Forster Marc K. Smith

Georgia Institute of Technology Woodruff School of Mechanical Engineering

Motivation

- Power electronics cooling using pool boiling heat exchangers.
- Models are being developed for pool boiling heat transfer with micro-channels in the presence of an acoustic field.
 - Increase critical heat flux (CHF) by delaying transition to film boiling.

 μ -channels \rightarrow 350 W/cm² μ -channels \rightarrow 450 W/cm²

Photos courtesy of Thomas Boziuk and Ari Glezer Georgia Institute of Technology - Atlanta, GA

Previous Work

Present Work

- Two boiling models
 ALE single-bubble boiling
 - Level-set nucleate boiling

ALE Boundary Conditions

Normal-stress boundary condition

$$\left(\underline{\underline{\sigma}}_{\underline{l}} - \underline{\underline{\sigma}}_{\underline{g}} \right) \hat{n} = \sigma \kappa \hat{n} + P_{recoil}$$

$$\underline{\underline{\sigma}}_{g,l} = \left[-P \underline{\underline{I}} + \eta \left(\nabla \underline{\underline{u}} + \left(\nabla \underline{\underline{u}} \right)^T \right) \right]_{g,l} \qquad \kappa = \nabla_{\!\! S} \cdot \hat{n}$$

Interface temperatures

 $T_l = T_v = T_{sat}$

Vaporization

 $\overline{q''_{vaporization}} = k_l \nabla T_l \cdot \widehat{\boldsymbol{n}}_l + k_v \nabla T_v \cdot \widehat{\boldsymbol{n}}_v$

Interface velocities

$$v_{n,l} = -\frac{q''vaporization}{\rho_l(h_v - h_l)} \qquad v_{n,v} = -\frac{q''vaporization}{\rho_v(h_v - h_l)}$$
$$(\underline{u} - \underline{u} \cdot \hat{n})_l - (\underline{u} - \underline{u} \cdot \hat{n})_v = 0$$
$$(\underline{u}_v \cdot \hat{n}_v - \underline{u}_l \cdot \hat{n}_l) + v_{n,l} + v_{n,v} = 0$$
$$u_{n,mesh} = \underline{u}_l \cdot \hat{n}_l + v_{n,l}$$

Level-Set Boundary Conditions

Temperature Recovery Method

 $\dot{m} = C\rho_l \left(\frac{T - T_{sat}}{T_{sat}}\right)$ Modified Continuity Equation $\nabla \cdot \underline{u} = \delta \left(\frac{1}{\rho_v} - \frac{1}{\rho_l}\right) \dot{m} \hat{n}$ Interface Tangential Stress $\hat{n} \cdot \left[\mu_l \left(\nabla \underline{u} + \nabla \underline{u}^T\right)_l - \mu_v \left(\nabla \underline{u} + \nabla \underline{u}^T\right)_v\right] \times \hat{n} = 0$ Interface Normal Stress $-p_l + p_v + \hat{n} \cdot \left[\mu_l \left(\nabla \underline{u} + \nabla \underline{u}^T\right)_l - \mu_v \left(\nabla \underline{u} + \nabla \underline{u}^T\right)_v\right] \cdot \hat{n}$ $= \sigma \kappa - \left(\frac{1}{\rho_v} - \frac{1}{\rho_l}\right) \dot{m}^2$

Heat Source Term

 $\rho_f c_f \left(\frac{\partial \underline{\boldsymbol{u}}_f}{\partial t} + \underline{\boldsymbol{u}}_f \cdot \nabla T_f \right) = \nabla \cdot k_f (\nabla T)_f - \delta \dot{m} h_{lv}$

Modified Level–Set Equation $\frac{\partial \phi}{\partial t} + \underline{U} \cdot \nabla \phi = 0$ $\underline{U} = \underline{u}_f + \frac{\dot{m}}{\rho_f} \hat{n}$

ALE Results

Slip Contact Line

Pinned Contact Line

Level-Set Results

1/8th symmetry

2D Model

Level-Set Results

1/8th symmetry

2D Model

Summary

ALE model is good for modeling dynamics of a single bubble in greater detail.

Level-set offers the ability to model more complicated bubble interactions at the cost of interface detail.

Future Work

Combine benefits of ALE and level-set

Boiling in micro-channels

- Effects of channel spacing, width, and depth
- Effects of contact angle
 - Material selection
 - Coatings

Determine fundamental mechanisms that allow the micro-channels to increase the critical heat flux

Add effects of acoustics

Questions?

Level-Set Reinitialization Error

