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Outline of the Presentation 

• Creation of High Flux Isotope Reactor (HFIR) Fuel 
Plate Involute Geometry 

• Data Interpolation for Use in Simulations 

• Comparison of COMSOL Results with HFIR Legacy 
Steady State Heat Transfer Code 

• Creation of a More Physically Accurate 2-D 
Thermal-Hydraulic Model of the HFIR 
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Isometric View of the HFIR Core 
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HFIR  - Pressurized Water Reactor 
 
Physically small reactor core 
         OD 34.3 in.; Height 31.1 in. 
 
85 kW Thermal 
 



HFIR fuel elements - heat removal requires large surface 
area; high surface–to–volume ratio; plate thickness and 
flow channels as thin as possible 

 154 kW heat generation per inner plate 
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Fuel plates are involute shaped  

 Plate thickness and flow cross-sectional areas are 
constant in the  radial direction. 

 In HEU fuel plates, fuel is radically  distributed to yield 
constant neutron flux in radial distribution. 
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Flow Channels are long and narrow  
 Width, W = 0.050 in.  
 Length, L  = 24 in. 
 Aspect Ratio =  W/L = 480 

ReDh = 69,907   Turbulent flow 

Water inlet Temperature  129.9 °F (327 K) 
Inlet pressure   482.7 psia (3.233 MPa)  
Core Pressure drop   105 psi (0.724 MPa) 



Geometry Parameterization 

• The HFIR involute of circle fuel 
plate geometry is created as a 
function of the generating 
circle radius, r, and the 
subtended angle, θ. 

• The low enriched Uranium 
(LEU) fuel contour is created as 
a function of θ relative to the 
base involute curve. 

• In essence, parametric curves 
within parametric curves ! 

Reference: HFIR Drawing D-42122A 
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HEU Inner Fuel Element Fuel Contour 

LEU fuel contour  



Assumptions used in the Legacy HFIR SSHTC* 

• HFIR fuel plate geometry is modeled as a flat plate instead 
of as the involute of a circle 

• Axial and span-wise (i.e. arc-length along the involute) 
thermal energy diffusion is suppressed in the fuel plates 

• A Nusselt number correlation is used to specify a local 
convection coefficient 

• The bulk water temperature is found using “suitable” heat 
balances, therefore no bulk flow of water is needed in the 
simulation 

*Reference: McClain, Howard A. “HFIR Fuel Element Steady State Heat Transfer Analysis Revised 
Version”  ORNL-TM-1904 
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Comparison of HFIR SSHTC Clad Surface Heat Flux 
with COMSOL Results 

Flow 
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Comparison of HFIR SSHTC Clad Surface 
Temperature with COMSOL Results 

Flow 
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Two-Dimensional Conjugate Heat Transfer 
Capabilities of COMSOL of Interest Regarding this 
Study 

• Conduction and convection modes of heat transfer may 
be simulated simultaneously. 

• Laminar or turbulent convection simulation environments 
are available. 

• Several turbulent flow models are available including the 
k-ε Reynolds averaged Navier-Stokes (RANS) closure 
model, the low Reynolds number (LRN) k-ε model, and the 
Spalart-Allmaras model 
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Schematic of the 2-D Axial Slice Geometry used in 
COMSOL Simulations 

Clad 

Fuel 

Fluid 

Plane of symmetry 

y 

x 

V 

11 



COMSOL Relaxation of Assumptions used in the 
HFIR SSHTC 
• Well known and established turbulence models are used to 

simulate fluid flow in the conduction-convection physics. 

• The convection coefficient is not specified in any way, instead it 
is determined by the physics of the problem 

• Bulk water temperature is also determined by the physics of 
the problem 

• For the 2-D models, axial conduction is allowed by specifying an 
isotropic thermal conductivity tensor in the material properties 
for the fuel plate components 

• Convergence criteria was set to 1×10-6 in these simulations for 
the primitive variables (u, v, p, k, ε, T) 

 
12 



Global Mass and Energy Conservation Errors as a 
Function of Element Number for LowRe k-epsilon 
Model 

Element # 

A 
Relative Energy 

Error: Clad Surface 
to Net Energy 

Convection [%] 

B 
Relative Energy 

Error: Generation to 
Net Energy 

Convection [%] 

C 
 

Relative Energy 
Error: Clad Surface 
to Generation [%] 

Relative Mass Error: 
Inlet to Outlet [%] 

69532 6.4845E-01 7.5700E-02 5.7649E-01 0.0000E+00 

75112 2.1490E-01 9.9050E-02 3.1463E-01 0.0000E+00 

80332 1.7475E-02 4.0785E-02 2.3306E-02 0.0000E+00 

85552 5.2390E-02 1.7475E-02 6.9902E-02 0.0000E+00 

91132 5.8245E-03 1.7475E-02 1.1650E-02 0.0000E+00 

96352 2.3302E-02 1.7475E-02 5.8251E-03 0.0000E+00 

101932 4.0785E-02 1.7475E-02 2.3301E-02 0.0000E+00 

107152 3.4957E-02 1.7475E-02 1.7475E-02 0.0000E+00 

112372 3.4957E-02 1.7475E-02 1.7475E-02 0.0000E+00 

117952 3.4957E-02 1.7475E-02 1.7475E-02 0.0000E+00 
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Over all energy balances for the LowRe k-

epsilon Model were shown to be mesh 

independent.   

 

The maximum error is less than 0.03% 
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Comparison of Clad Surface Temperature 

Distribution Results of  SSHTC and COMSOL 

Model 

Flow 
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Conclusions 

• Created a self-contained 2-D multi-physics model using 
COMSOL  without the ultra-conservative assumptions 
used in the SSHTC 

• In this model the thermal energy can now diffuse in all 
directions through the plate material thus lowering the 
temperature levels relative to the SSHTC 

• A more physically realistic, “best-estimate”, clad surface 
temperature is obtained due to axial diffusion of the 
thermal energy in the plate coupled with the turbulent 
flow simulation 
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Questions 
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Case A energy balance check: 

Schematic showing boundaries used in 

establishing global conservation of energy 

between the energy leaving the clad surface 

and the net convected thermal energy 
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Case B energy balance check:  

Graphical representation of the quantities used 

in the relative error in the conservation of 

energy between the generated thermal energy 

and the net convected thermal energy 
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Case C energy balance check:  

Graphical representation of the quantities used 

in the relative error in the conservation of 

energy between the generated thermal energy 

and the energy leaving the clad surface 
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