Presented at the

COMSOL Conference, Boston 2011

October 13-15

Advanced multi-physics actuation model of ionic polymer-metal composites

David Pugal*, Kwang J. Kim*, and Alvo Aabloo

*Active Materials and Processing Laboratory (AMPL)

Low Carbon Green Technology Laboratory (LCGTL)

Dept. of Mechanical Engineering

University of Nevada, Reno

#IMS Lab, Institute of Technology

University of Tartu, Estonia

Outline

- Ionic polymer-metal composite (IPMC) materials
 - Working principle
 - Actuation model
- Model implementation
 - 2D model with electrode effect
 - Projection coupling to implement Ramo-Shockley theorem
 - 3D model
 - using couplings to overcome the high aspect ratio
 - Results

IPMC – working principle

- Thin polymer sheet sandwiched between noble metal electrodes
 - Typically Nafion polymer with Pt electrodes
- Applying a low voltage (1...4 V) results in significant bending of the material
- Benefits of using as an actuator
 - Low voltage operation
 - Operates in wet environment
 - Noiseless

IPMC – working principle

Video: 0.5 mm thick, 5cm long, 3V AC

IPMC - Actuation model

Basic actuation model

Cation accumulation / depletion causes body force → bending

voltage → cation concentration gradient

IPMC - 2D modeling

Governing equations

- lonic currents
- Electric currents
- Navier's equation

$$(\lambda + \mu) u_{k,ki} + \mu u_{i,jj} + F_i = 0$$

$$F_x = A\rho + B\rho^2, \quad F_y = 0$$

 $\frac{\partial C}{\partial t} + \nabla \cdot (-D\nabla C - z\mu F C \nabla \phi) = 0$ $-\nabla^2 \phi = \frac{F(C - C_0)}{\varepsilon}$

 $\sigma \nabla V = -\vec{j}$ $j = \frac{1}{h} \int f \, dl$

Projection coupling is used to relate ionic flux f to current density j

IPMC – 2D modeling

2D Comsol implementation

- Scale physical domain in longitudinal direction
- Calculate the ionic and electric current part of the model

IPMC – 2D modeling

2D Comsol implementation

- Actuation is calculated on a full-scale domain
- Cation concentration (or charge density) is projected from the scaled domain

Cation concentration is projected on a full scale domain to calculate deformation

Rather coarse mesh is used

Active Materials and Processing Lab. (AMPL)
Low Carbon Green Technology Lab. (LCGTL)

IPMCs for twisting actuation

Multi-DOF IPMCs

- Control surfaces for complex motion (fish fin)
- Propulsion, maneuvering
- Patterned IPMCs can be use to get multi-DOF actuation

Modeling challenge

- Same as in case of 2D
 - Fine mesh, high aspect ratio
- Even simple scaling challenging

Low Carbon Green Technology Lab. (LCGTL)

IPMC – 3D modeling approach

- There are 1...n different electrodes in case of a patterned IPMC.
 - For instance, the specimen shown before has 4 electrode domains:

- Calculate the concentration C for each electrode
 - 2D domain: 200μm x 100 μm
 - Dense mesh near the boundaries
 - Very fast calculation
- Save the calculation results for each time step

Extrude (and scale) the saved values

Calculate the 3D bending

IPMC – 3D modeling approach

Extruded and scaled voltage shown

- Positive voltage applied to the electrodes on left
- The electrodes on right are grounded
- Notice the voltage drop

Active Materials and Processing Lab. (AMPL)
Low Carbon Green Technology Lab. (LCGTL)

IPMC – 3D modeling result

3D actuation calculation

Color: y-directional displacement

$$V_1 = 5[V]\sin(2\pi t),$$

$$V_2 = -5[V]\sin(2\pi t)$$

IPMC – 3D modeling and experiment

Measured versus calculated twisting angle

- Applied voltages
 - Electrodes 1, 2: $V_1 = 5[V] \sin(2\pi t)$,
 - Electrodes 3, 4: $V_2 = -5[V]\sin(2\pi t)$

Conclusions

Conclusions

- A physics based model of IPMC was implemented in Comol Multiphysics
 - Electrode currents were coupled to the ionic currents using *Projection coupling* feature
 - Calculated charge density was projected to the full scale 2D domain to calculate deformation

- 2D projection and extrusion was used
- The calculations results were also validated
- Overall, using the coupling features of Comsol, a rather complicated multi-physics problem was solved on a high aspect ratio geometry

Thank you

Acknowledgements

 We acknowledge the financial support from the Office of Naval Research and Estonian Archimedes Foundations

Questions?

