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Abstract: We treat a gradient constrained min-
imization problem which has applications in
mechanics and superconductivity. A particular
case of this problem is the elastoplastic torsion
problem. In order to solve the problem we de-
veloped an algorithm in an infinite dimensional
space framework using the concept of the gener-
alized Newton derivative. The Desktop environ-
ment of COMSOL Multiphysics 4.1 was used to
test the algorithm with Argyris finite elements.
Numerical tests demonstrate mesh-independent
behaviour of the method.
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1. Introduction

Let Ω ⊂ R2 be simply connected bounded
Lipschitz domain. The set K = {v ∈
H1

0 (Ω)| |∇v| ≤ 1 a.e. in Ω} is non-empty,
convex and closed in H1

0 (Ω). For a given f ∈
H−1(Ω) we treat the variational inequality : to
find a solution u ∈ K such that∫

Ω

∇u∇(v−u)dx≥ 〈 f ,v〉 ∀v ∈ K. (1)

This variational inequality can equivalently
be formulated as a gradient constrained mini-
mization problem: to find a solution u ∈ K such
that

J(u) = min
v∈K

J(v)

where

J(v) =
1
2

∫
Ω

|∇v|2dx−
∫

Ω

f vdx. (2)

The cost functional J(v) is lower semicon-
tinuous, strictly convex and proper. Thus, we
can claim the existence of unique solution u ∈

H1
0 (Ω) by using of the standard arguments for

constrained minimization problems (e.g. [8]).
In [4] it is shown that even under smooth data

assumption the solution cannot have the regu-
larity higher than W 2,p(Ω),1 < p < ∞.

1.1 Optimality system

The existence of Lagrange multipliers λ ∈
L∞(Ω) for the case with f = d > 0 constant was
proven in [1]. For the general case f ∈ L2(Ω)
the question on the regularity of Lagrange mul-
tipliers is still open. Let us start with the formal
Lagrangian for the problem :

L (v,λ ) =
1
2

∫
Ω

|∇v|2dx−
∫

Ω

f vdx+

+
∫

Ω

λ (|∇v|2−1)dx.

Now if u∗ denotes a solution (the existence of
which we know) then the formal Karush-Kuhn-
Tucker (KKT) conditions for a Lagrange multi-
plier λ ∗ is:∫

Ω

(1+2λ
∗)∇u∗∇vdx = 〈 f ,v〉 ∀v ∈ H1

0 (Ω)

λ
∗ ≥ 0, |∇u∗|2−1≤ 0, (λ ∗, |∇u∗|2−1) = 0

(3)

This system has a nonlinear structure and we
want to use the Newton method for solving it.
Since with the last row it is impossible to apply
Newton method we reformulate the optimality
system in the following way:

(∇u∗,∇v)+2(λ ∗,∇u∗ ·∇v) = 〈 f ,v〉
∀v ∈ H1

0 (Ω),

λ
∗ = max(0,λ ∗+ c(|∇u∗|2−1)) (4)

where c > 0 is fixed and the max-operation is
defined pointwise.



1.2 Regularization

Further we continue with the infinite dimen-
sional form of the system to solve. The New-
ton method in Banach space requires the Frechet
differentiability of the operator describing the
equation. Since the pointwise max-function is
not Frechet differentiable we apply semismooth
Newton method where the Frechet derivative is
replaced by a generalized, so called, Newton
derivative.

We recall the definition of the Newton deriva-
tive. Let F : D ⊂ X → Y be a continuous map-
ping, X and Y are Banach spaces, and D is an
open domain in X . We consider nonlinear oper-
ator equation:

F(u) = 0, (5)

Definition 1 [6] The mapping F : D⊂X→ Z is
called generalized differentiable (Newton differ-
entiable) on the open subset U ⊂ D if there ex-
ists a family of generalized derivatives G : U →
L(X ,Z) such that

lim
‖h‖→0

1
‖h‖
‖F(x+h)−F(x)−G(x+h)h‖= 0,

for every x ∈U.

Now we consider Newton differentiability of
the pointwise max-operator. For δ ∈R we intro-
duce the following candidate for its generalized
derivative of the form:

Gδ (u)(x) =

 1 if u(x)> 0
δ if u(x) = 0
0 if u(x)< 0.

Proposition 2 [3] The mapping max(0, ·) :
Lq(Ω) → Lr(Ω) with 1 ≤ r < q ≤ ∞ is New-
ton differentiable on Lq and Gδ is a generalized
derivative.

To use the semismooth Newton method we
have to regularize the equation (4) first.

It is clear that for the solution u∗ the comple-
mentarity condition in (3) is valid and∫

Ω

λ
∗(|∇u∗|2−1)dx =∫

Ω

max(0,λ ∗+ c(|∇u∗|2−1))(|∇u∗|2−1)dx =

= 0 = c
∫

Ω

max(0, |∇u∗|2−1)2dx

The last expression is as a penaliza-
tion of the constraint. Moreover, λγ =
c
∫

Ω
max(0, |∇u∗|2 − 1)dx is an approximation

of the Lagrange multipliers in some sense.

If instead of fixed 2c > 0 we choose a se-
quence of penalty parameters {γ} then we ob-
tain the augmented Lagrangian method for solv-
ing of the constrained minimization problem:
we solve the sequence of unconstrained mini-
mization problem with the objective functional

Jγ(v) =
1
2

∫
Ω

|∇v|2dx−
∫

Ω

f vdx+

+
γ

2

∫
Ω

max(0,(|∇v|2−1))
2
dx.

to be minimized over the space H1
0 (Ω). The

objective functional is proper over H1
0 (Ω),

strictly convex and lower semicontinuous, con-
sequently there exists unique minimizer uγ ∈
H1

0 (Ω). The necessary and sufficient optimality
condition is the following variational problem:

Problem 3 Find uγ ∈ H1
0 (Ω) such that

(∇uγ ,∇v)+(λγ ,∇uγ ·∇v)= 〈 f ,v〉 ∀v∈H1
0 (Ω),

λγ = 2γ max(0, |∇uγ |2−1)).

We have the following result (we omit the
proof here):

Theorem 4 Assume that there exist Lagrange
multiplier λ ∈ L∞(Ω) for the problem (3). For
γ→∞ the solutions (uγ ,λγ) of problem (3) con-
verges to the solution (u,λ ) of problem (3) in
the sense that uγ → u in H1

0 (Ω) and λγ ⇀ λ in
L2(Ω).

Although the solution of the original prob-
lem is H2(Ω) ∩ H1

0 (Ω) its approximation uγ

may not have that higher regularity. Then with
|∇uγ | ∈ L2(Ω) we cannot obtain Newton differ-
entiability of 2γ max(0, |∇uγ |2−1)) because of
the chain rule [5] which requires continuous dif-
ferentiability of the inner operator. In order to
get smoother approximation we perturb prob-
lem (3). For the functional

Jγ,ε(v) =
ε

2
(∆v)2 + Jγ(v)

its minimization problem over the space
H2(Ω) ∩H1

0 (Ω) has a unique solution uγ,ε ∈
H2(Ω)∩H1

0 (Ω) by the same arguments men-
tioned above.

Thus we come up with the following modi-
fied problem :

Problem 5 Find uγ,ε ∈ H2(Ω) ∩ H1
0 (Ω) such

that

ε(∆uγ,ε ,∆v)+(∇uγ,ε ,∇v)+(λγ,ε ,∇uγ,ε ·∇v) =

= 〈 f ,v〉 ∀v ∈ H2(Ω)∩H1
0 (Ω),

λγ,ε = 2γ max(0, |∇uγ,ε |2−1)).
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We have results on the convergence of uγ,ε to
uγ in H1

0 (Ω) as ε→ 0 which we don’t bring here
due to the scope of the paper.

Finally, we bring the results on the semis-
moothness of the Newton method for the prob-
lem (5)

Theorem 6 For fixed γ ∈ R+ and ε ∈ R+

the semismooth Newton method applied to the
problem (5) has superlinear convergence of
u(k)γ,ε to uγ,ε in H2 ∩H1

0 (Ω) provided that for

the initialization u(0)ε the norm value ‖u(0)γ,ε −
uγ,ε‖H2(Ω)∩H1

0 (Ω) is sufficiently small.

For the semismooth Newton method the lin-
earization of the nonlinear operator equation
F(u) = 0 has the form

DF(u(k))δu =−F(u(k)),

where DF is the Newton derivative of F , δu is
the update for u. The use of the method leads to
the following variational equation at the Newton
iteration:

ε

∫
Ω

∆u(k+1)
γ,ε ∆v+

∫
Ω

a(k)∇u(k+1)
γ,ε ∇v =∫

Ω

g(k)∇u(k)γ,ε ∇v+
∫

Ω

f v,

∀v ∈ H2(Ω)∩H1
0 (Ω) (6)

where

a(k) = (1+2γχ(k)
A · (|∇u(k)γ,ε |2−1))I+

4γχ(k)
A ∇u(k)γ,ε ⊗∇u(k)ε ,

with

I =
[

1 0
0 1

]
,

and

g(k) = 4γχ(k)
A |∇u(k)γ,ε |2.

Here the characteristic function

χ(k)
A (x) =


1 if |∇u(k)γ,ε(x)| ≥ 1

0 if |∇u(k)γ,ε(x)|< 1

describes the active and inactive sets. For the
elastoplastic torsion problem the region where
the characteristic function for the final solution
u vanishes can be interpreted as the elasticity re-
gion and the rest of the domain is then the plas-
ticity region where |∇u|= 1.

The Newton iterations are performed until we
get the same active set in two consecutive New-
ton steps since the equation is uniquely deter-
mined by it.

1.3 Algorithm

The whole procedure consists of two nested
loops. The outer loop increases the continua-
tion parameter γ. For the initialization we can
set γ0 = 0, then the corresponding initialization
is the solution for the unconstrained problem. In
the inner loop Newton iterations for the current
value of γ are performed.

Algorithm 1 Semismooth Newton Method

1: γ := γ0, choose u(0)γ,ε , choose ε > 0

2: u(c) = u(0)γ,ε

3: while not converged do
4: k = 0
5: Set Aγ,0 =

{
x ∈Ω : |∇u(c)|2 > 1

}
6: while not converged do
7: k = k+1
8: solve (6) for u(k+1)

γ,ε

9: Aγ,k+1 =
{

x ∈Ω : |∇u(k+1)
γ,ε |2 > 1

}
10: if Aγ,k+1 = Aγ,k then
11: STOP
12: end if
13: end while
14: u(c) = u(k)γ,ε

15: increase γ

16: end while

2. Implementation using COMSOL
Multiphysics

Testing of our algorithm we carried out us-
ing GUI of COMSOL Multiphysics 4.1. We
were able to show semismoothness of Newton
method for the problem working in the function
space H2(Ω)∩H1

0 (Ω) and therefore it’s impor-
tant to test the algorithm with C1-conforming fi-
nite elements method for solving (6). COMSOL
Multiphysics 4.1 allows using of Argyris shape
functions for it.

In order to implement Newton iterations we
used the time-discrete solver in COMSOL Mul-
tiphysics. We turned the Newton iterations into
a time dependant problem discretized in time
with the time step size 1. Thus, the equation (6)
represents a discretization in time, u(k+1)

γ,ε in the
equation corresponds to the current time solu-
tion and u(k)γ,ε - the preceding time solution. The
reason for using it was that the operator ’prev’
corresponding to the previous iteration solution
helped us to transfer the gradient data from iter-
ation to iteration.

We describe the main features used in order
to implement the continuation method in algo-
rithm (1) by using of COMSOL desktop en-
vironment. In the text below ’→’ means the
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choose of subnode or from the corresponding
content menu, subsequent menu, panel window,
and ’=’ means the choose from the list.

• We begin modeling with Equation based
modeling→ Weak Form PDE→ Time de-
pendant. It is necessary to remove the node
Time-dependant solver and replace it with
Time-discrete solver.

• In PDE node we set
Discretization→Argyris Quintic. In
Weak form PDE node we set the equation
form as in (6). To enter u(k)γ,ε in the equation
line we use operator prev: e.g. ’prev(u,1)’,
and for differentiation ’d(prev(u,1),x)’.

• In COMSOL Multiphysics 4.1 PDE→
Dirichlet Boundary Condition is not suit-
able for using of Argyris finite elements
on domains with curved boundary due to
that the system will then be overdeter-
mined. Instead we use PDE→Pointwise
Constraint and set the corresponding dis-
cretization to ’Lagrange Quadratic’.

• By Global Definitions→Variables we give
the data on the exact solution which is
known for the elastoplastic torsion prob-
lem with f = d > 0 constant on the circular
domain and its derivatives.

• By Model→ Definitions→ Model
Couplings→ Integration we set an in-
tegration operator with the integration
order equal to 10. This operator we use for
defining of error norms in function space:
Model→Definitions→Probes→Global
Variable Probes. The values of the defined
norms will then be calculated after each
iteration.

• In Study Settings for the Time Discrete
Solver we set ’Times = range (0,1,100)’.
Thus the maximal number of Newton iter-
ations is limited to 100 for the case of non-
convergence in our test examples.

• The stopping condition defined by the co-
incidence of active sets as in algorithm
(1) we replace with the convergence in
H2(Ω)∩H1

0 (Ω)-seminorm

‖u‖=
(∫

Ω

|∆u|2dx
) 1

2

with tolerance parameter 10−10 using the
feature Time Discrete Solver→Stop Condi-
tion.

• For the availability of the preceding so-
lution it’s necessary to add a subnode
Solver→Store Solution.

• MUMPS direct solver was used and the
damping was set to constant 1.

• For experiments with the increase of the
step size of the continuation parameter γ

we first give its initial value, handle ini-
tialization of the solution by zero using
the Dependent Variables node. Then we
run the study. For the next values of the
the continuation parameter first we need
switch on the continuation in the follow-
ing way : in the settings for the node
Dependent Variable we set Initial Values
with ’Method = Solution’ and ’Solution
= Solver 1’ (the name of the correspond-
ing solver). The increase of the continu-
ation parameter and running of the study
can be done simply ’by hand’ or the loop
can be automatized by adding in Job Con-
figuration node the feature Parametric. In
the Settings panel for the new node we
enter the name of the continuation pa-
rameter and its range. Then we add a
node Parametric→Solver setting it with
’Sequence=All’. It was also possible to
use LiveLink for Matlab to fully automa-
tize the outer loop.

3. Numerical results

3.1 Example 1

In this example we consider the elastoplastic
torsion problem. A detailed description of the
problem can be found in [7], we consider here
its general mathematical formulation i.e. the
case of infinitely long cylinder and Ω is its
cross-section. We consider an example the ex-
act solution for which is known ([2], p.122):

min
v∈K

[
1
2

∫
Ω

|∇v|2dx−d
∫

Ω

v(x)dx
]

K = {∈ H1
0 (Ω) : |∇v| ≤ 1 a.e. in Ω}

hereby, d > 0 constant and

Ω = {x ∈ R2| x = (x1,x2), x2
1 + x2

2 < 1};

the exact solution is given by :
if d ≤ 2

u(x) =
d
4
(1− r2),

and if d ≥ 2

u(x) =

{
1− r if 2

d ≤ r ≤ 1
−d r2

4 +1− 1
d if 0≤ r ≤ 2

d
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here r =
√

x2
1 + x2

2.

First, we experiment without the smoothing
term ε

∫
Ω

∆u(k+1)
γ,ε ∆v. In Table 1 we bring the

detailed convergence results for a triangulation
mesh with 1902 triangles and 8873 degrees of
freedom (DOF). The continuation method is
initialized by zero; the stopping condition for
the Newton iterations is |‖u(k+1)‖ − ‖u(k)‖| <
10−10, where ‖u‖= (

∫
Ω
|∆u|2) 1

2 .
For the loops with γ = 1,10,100,1000 New-

ton iterations converge in about six iterations,
but for γ = 104 44 Newton iterations were
needed (Table 1). But as the constraint vio-
lation term

∫
Ω

max(0, |∇uh|2 − 1)2dx is suffi-
ciently small already with γ = 1000, in this case
there is no necessity to increase γ further. The
Figure 2 shows that the free boundary, interface
between active and inactive sets of the solution
with γ = 1000 corresponds to that of the exact
solution.

Figure 1: The solution uε,γ with ε = 0, γ = 1000

To check the convergence rate of Newton it-
erations first we increase the number of time-
discrete levels up to maximal number of itera-
tions and add the same number of nodes Solver
→ Other→ Store Solution. Thus the solutions
at the Newton iterations will be available at the
postprocessing stage for the calculation of the
norm value

‖u(k)−u(M)‖=
(∫

Ω

|∇(u(k)−u(M))|2
) 1

2
,

where u(M) is the last iteration for the current
value of γ. In Figure 3 we present the data on
convergence of Newton iterations on a loga-
rithmic scale of H2(Ω)∩H1

0 (Ω)-seminorm with

Table 1: Convergence results for the triangulation
mesh with 1902 triangles and 8873 DOF (uh ob-
tained solution); here CVM is the short notation for∫

Ω
max(0, |∇uh|2−1)2

γ iter. |uh−u∗h|H1
0 (Ω) CVM

0 0 1.6993 -
1 1.5496 24.2440

1 1 0.7613 3.9270
2 0.3757 0.7450
3 0.2620 0.3305
4 0.2511 0.3005
5 0.2510 0.3002
6 0.2510 0.3002

10 1 0.0717 0.0215
2 0.0384 0.0058
3 0.0373 0.0054
4 0.0373 0.0054
5 0.0373 0.0054

100 1 0.011400874 1.07E-04
2 0.013605346 6.48E-05
3 0.013775854 6.45E-05
4 0.01377592 6.45E-05
5 0.013775917 6.45E-05
6 0.013775917 6.45E-05

1000 1 0.016495221 3.53E-06
2 0.017610584 2.26E-06
3 0.015743017 1.38E-06
4 0.015711185 1.31E-06
5 0.015678803 1.30E-06
6 0.015677152 1.30E-06
7 0.015677152 1.30E-06
8 0.015677152 1.30E-06

1E-4 . . .
43 0.0156 2.9687E-08
44 0.0156 2.9687E-08

Figure 2: Active (blue) and inactive (red) sets ob-
tained by postprocessing for the solution with f = 5
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ε = 0.0001. As it can be seen from the figure the
convergence rate is superlinear.

-10

-8

-6

-4

-2

0

2

0 1 2 3 4 5 6 gamma = 1

gamma = 10

gamma = 100

gamma = 1000

Figure 3: Superlinear convergence of Newton itera-
tions (on a logarithmic scale) with ε = 0.0001; mesh
with 1902 triangles

For the semismooth Newton method devel-
oped in infinite dimensional space framework
the convergence can be expected even for the
rapid increase of γ. For instance, we can obtain
the solution above without continuation method
(Figure 4) simply initializing by zero without
deteriorating the convergence. If in order to get
the convergence it was necessary to damp New-
ton iterations or come back to the smaller value
of γ and increase it again with smaller step size
then this means that semismoothness of New-
ton method is destroyed by discretization. We
tested Algorithm 1 with different finite element
implementation in COMSOL Multiphysics and
found out that among them Lagrange quadratic
and Argyris finite elements demonstrate robust
behaviour in respect of refining the mesh.

In Table 2 we present the results for two
meshes without continuation method with γ =
1000. In these tests no damping was done
and the stopping condition was convergence in
H1

0 (Ω) seminorm. In case of non-convergence
of Newton iterations we force to stop after 100
iterations. We note that for the implementa-
tion with Lagrange polynomials we used the
feature PDE → Dirichlet Boundary condition
and with Hermite and Argyris polynomials the
feature PDE → Pointwise Constraint with La-
grange Quadratic shape functions for the dis-
cretization of the boundary condition.

In Table 3 we bring results for tested meshes
using continuation with final γ = 1000. We see
that total number of iterations do not increase
with the refinement, thus the algorithm demon-
strates mesh-independent behaviour. Based on
this data the approximate rate of convergence
for using of Argyris finite elements for the prob-
lem can be obtained (last column). Here we
used the maximum element size in the meshes
for the calculation of the rate of convergence:

convergence rate = log h1,max
h2,max

error1

error2

-2

-1.5

-1

-0.5

0

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4: Log scale of the error norm vs iteration
number with γ = 1000; convergence in 13 iterations
without continuation initializing by zero

Table 2: Tests with various finite elements imple-
mentation in COMSOL Multiphysics 4.1

polynomial |uh−u∗h|H1
0 (Ω)

938 triangles, 6530 triangles,

Lagrange 0.0732 0.0525,
linear (55 iter.) (100 iter.)
Lagrange 0.0068 0.0012
quadratic (16 iter.) (15 iter.)
Lagrange 0.0025 6.40E-04
cubic (100 iter.) (100 iter.)
Lagrange 0.0017 5.02E-04
quartic (13 iter.) (100 iter.)
Lagrange 0.0014 5.02E-04
quintic (20 iter.) (100 iter.)
Hermite 0.2896 0.1891
cubic (100 iter.) (100 iter.)
Hermite 0.0022 5.52E-04
quartic (100 iter.) (100 iter.)
Hermite 0.0015 4.70E-04
quintic (16 iter.) (100 iter.)
Argyris 0.0286 0.0068
quintic (13 iter.) (11 iter.)

3.2 Example 2

In this example we want to show the effect
of ε

∫
Ω

∆u(k+1)
γ,ε ∆v in the equation on the solu-

tion. We choose rectangular domain Ω = {x ∈
R2| x = (x1,x2), −1≤ x1 ≤ 1,−1≤ x2 ≤ 1}
and

f (x,y) =


10cos(2((y−1)2 + x2−1))
if x2 +(y−1)2 < 1

0 elsewhere

First we try with mesh which has coarser
structure near the corners of the domain and
with ε = 0. Although we obtained convergence
of Newton iterations and stopped outer loop
with γ = 1000 (Table 4) Figure 5 illustrates
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Table 3: Tests with various meshes; last column:
convergence in H1

0 (Ω)-seminorm

# of # of # of conv.
triangles DOF iter. |uh−u∗h| rate

546 2631 13 0.0336
936 4428 13 0.0286 0.7
1902 8873 11 0.0157 1.7
6530 29951 11 0.0067 1.4

24924 113270 12 0.0026 1.4

Table 4: Test results for the Example 2; here CVM is
the short notation for

∫
Ω

max(0, |∇uh|2−1)2

268 triangles 520 triangles
1352 DOF 2156 DOF

ε = 0 ε = 10−4 ε = 0

# of 30 34 38
iter.

CVM 3.10E-07 2.62E-07 3.25E-07

that higher value of the constraint violation is
present on the corner.

Running of the algorithm with the same mesh
but with ε = 10−4 smoothed out the higher ab-
solute values of gradient (Figure 6). The im-
provement was also achieved with ε = 0 and re-
fining the mesh near the corner.

Figure 5: The result with ε = 0, mesh with 268 tri-
angles

4. Conclusions

In this paper we presented the continuation al-
gorithm for the gradient constrained minimiza-
tion problem and test results obtained by using
of COMSOL Multiphysics 4.1. The numerical
results of the algorithm implementation using

Figure 6: The result with ε = 0.0001, mesh with 268
triangles

Argyris shape functions show mesh indepen-
dent behaviour of the method. Test results con-
firm the theoretical part of our research work.
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