
LINKING THE DIMENSIONS

Andreas Helfrich-Schkarbanenko∗,1, Marc Mitschele2,
Sebastian Ritterbusch1, Vincent Heuveline1

1Institute for Applied and Numerical Mathematics 4, 2Institute for Analysis
∗Corresponding author: helfrich@kit.edu, Karlsruhe Institute of Technology (KIT)

Engineering Mathematics and Computing Lab (EMCL) & Institute for Applied and Numerical Mathematics 4

Fritz-Erler-Str. 23, Geb. 01.86
76133 Karlsruhe, GERMANY

1. Abstract. In many applications it is sufficient to
know the solution of a 3D boundary value problem in a
cross-section. This paper introduces a concept how to
model a 3D problem as a 2D problem. We apply this
procedure to a boundary value problem which arises
in the electrostatics. The presented method speeds up
the direct problem solver, and can be used to improve
the performance of the electrical impedance tomogra-
phy. A numerical example completes this study.

2. Introduction. Let Ω2 ⊆ R2 and Ω3 = Ω2×[−a, a]
be bounded Lipschitz domains, see [1]. In many ap-
plications, e.g. in geoelectrics, or in medical and in-
dustrial fields, it is sufficient to know the solution of
a 3D boundary value problem only in a cross-section
Ω2 × {0}, (cross-sectional 3D problem). The reduc-
tion of a cross-sectional 3D problem to a 2D problem
would accelerate the computation but it takes more
than only to reduce the dimension of the object to
investigate. Additional input is essential. In [3] an
approach was presented to face this challenge. In this
paper we introduce another way to reduce the gap be-
tween the 2D and the 3D problems, and subsequently
apply it on a problem, which arises in electrostatics as
follows.

Problem 1. Let γ ∈ L∞(Ω3) be an electrical con-
ductance1 function with 0 < c < γ < C. By
f : Ω3 → R we denote the current density and ν is
the exterior unit normal on ∂Ω3. Find the electrical
potential u ∈ C2(Ω3)∩C(Ω3) stimulated by f such that
the steady-state diffusion equation and the Neumann

boundary condition hold:

−div(γ∇u) = f in Ω3,

∂u

∂ν
= 0 on ∂Ω3.

For the theoretical investigation of this problem
and the numerical computation, we apply the Sobolev
space, see [1],

H1(Ω3) := W 1,2(Ω3)

= {u ∈ L2(Ω3) : D
αu ∈ L2(Ω3) ∀ |α| ≤ 1},

especially its subspace

H1
� (Ω3) := {u ∈ H1(Ω3) :

∫
∂Ω3

u ds = 0},

and consider the corresponding weak formulation of
the problem 1∫

Ω3

γ∇u · ∇v dx = −
∫
Ω3

fv ds for all v ∈ H1
� (Ω3)

obtained by means of the divergence theorem. For
suitable f ∈ H−1(Ω3) it has an unique solution u ∈
H1

� (Ω3), i.e. it is well-posed, see Lax-Milgram theorem
in [1].

2.1. Dimension Impact. Now, for the simplified
case γ ≡ 1, we will point out the effect of the space di-
mension on the solution in free space analytically. In
the following, we denote by 4n the n th dimensional
Laplacian, ‖ · ‖ is the Euclidean norm in Rn given by
‖x‖ = (

∑n
k=1 x

2
k)

1/2, δn is the n-dimensional Dirac’s
distribution and E := {x = (x1, x2, x3)

> ∈ R3 : x3 =

Key words and phrases. electrostatics, 2D problem, 3D problem, accelerating algorithms.
1Electrical admittance is a complex-valued measure of how easily a circuit or device will allow a current to flow. Its unit is

siemens (S). Electrical conductance is the real part of the admittance. It is the inverse quantity of the el. resistance and is measured
in siemens, too.
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0} a plane in R3. Applying Fourier transformation on
the Poisson equation

−4nun(x) = δn(x) for x ∈ Rn (1)

yields the fundamental solution, see [2, Chap. 2.2.1]

Φn(x) =

{
− 1

2π ln ‖x‖, x ∈ R2\{0},
1
4π

1
‖x‖ , x ∈ R3\{0}.

The fundamental solutions demonstrate clearly the di-
mension impact on the solution of the given BVP. As
δn is not in H−1(Ωn), we consider more regular cur-
rent densities fn, and compute the electrostatic poten-
tial in R3 due to a ball as a support of fn. By rescal-
ing, it suffices to consider the case when the forcing
function is

f3(x) =

{
1, for ‖x‖ ≤ 1,

0, else.

We use the following well-known theorem.

Theorem 2.1. A particular solution to the resulting
Poisson equation −43ũ3 = f3 in R3 is given by a
convolution integral

ũ3(x) = Φ3 ∗ f3(x)

=
1

4π

∫
‖ξ‖3<1

1

‖x− ξ‖
dξ. (2)

Since the forcing function f3 is radially symmetric,
the solution ũ = ũ(r) is also radially symmetric. To
evaluate the integral, we can choose x = (0, 0, x3)

>,
so that r = ‖x‖ = |x3|. We use cylindrical coordinates
ξ = (ρ cosϑ, ρ sinϑ, ζ)>, so that

‖x− ξ‖3 =
√
ρ2 + (x3 − ζ)2.

The integral (2) can then be explicitly computed:

ũ3(x3) =

=
1

4π

∫ 1

−1

∫ √
1−ζ2

0

∫ 2π

0

ρ√
ρ2 + (x3 − ζ)2

dϑ dρ dζ

=
1

2

∫ 1

−1

√
1 + x2

3 − 2x3ζ − |x3 − ζ| dζ

=

{
1

3|x3| , |x3| ≥ 1,

1
2 − x2

3

6 , |x3| ≤ 1.

Therefore, by radial symmetry, the solution is

ũ3(x) =

{
1
3r , |r| ≥ 1,
1
2 − r2

6 , |r| < 1.
(3)

Similarly, one computes the two-dimensional electro-
static potential and obtains the logarithmic asymp-
totic behavior of ũ2.

3. Linking the dimensions. To solve a cross-
sectional 3D problem, traditionally, we have following
main options:

• apply the 3D model and extract the cross-section
of interest,

• apply the Fourier transformation assuming the
cylindrical property of the domain and γ,

• apply the boundary integral method for piece-
wise constant γ.

In this section, we propose a procedure to reduce
the computational demands. The basic idea is to
adapt a 2D model to the cross-sectional 3D model,
in order to reduce the discrepancy between their so-
lutions. In practice, our purpose is to expand the
two-dimensional partial differential equation (PDE)

−42u2(x) = f2(x), x ∈ R2,

by a function h : R2 → R, such that

−42ũ3|E(x) + h(x) = f2(x), x ∈ R2. (4)

Here, h is the additional input we talk about in Sec-
tion 2. Since

∂

∂xk

1

‖x‖
= − xk

‖x‖3
and

∂2

∂x2
k

1

‖x‖
= − 1

‖x‖3
+

3x2
k

‖x‖5
, k = 1, 2

and following the cases in (3), it yields for ‖x‖ ≥ 1

−42ũ3(x) = −42
1

3‖x‖

= −1

3

(
− 1

‖x‖3
+

3x2
1

‖x‖5
− 1

‖x‖3
+

3x2
2

‖x‖5

)
=

1

3

(
2

‖x‖3
− 3‖x‖2

‖x‖5

)
= −1

3

1

‖x‖3
,

and for ‖x‖ < 1

−42ũ3(x) = −42

(
1

2
− ‖x‖2

6

)
= 42

x2
1 + x2

2

6

=
2

3
.



LINKING THE DIMENSIONS 3

Hence, we finally obtain

h(x) =

{
1
3

1
‖x‖3 , ‖x‖ ≥ 1,

− 2
3 , ‖x‖ < 1.

So, in principal, by adding h we change the stimula-
tion of the two-dimensional electrostatic potential in
such a way that the resulting u0

2 with

−42u
0
2(x) + h(x) = f2(x), x ∈ R2

and ũ3|E coincide.

Remark 3.1. Note that u0
2 − ũ3|E ≡ 0 holds only

for γ ≡ const, i.e. for this case we found a per-
fect link between the 2D and the cross-sectional 3D
Poisson PDE. For general γ, i.e. considering the op-
erator div(γ∇·), the gap between both solutions can
not be closed completely, since the expansion of the
two-dimensional PDE (1) by h was done for a homo-
geneous free space, i.e. we omit the effect on h of γ
and the Neumann boundary condition, as well.

In the next section, we both solve the 2D BDE and
the cross-sectional 3D BVP by means of Finite Ele-
ment Method for constant and inhomogeneous con-
ductance γ, and compare the results.

4. Numerical Example. We consider the domains

Ω2 := [−1, 1]× [−1, 1] and Ω3 := Ω2 × [−1, 1].

Let B1, B2 denote two balls with a radius 0.025
and the center points p = (−1/2, −1/2, 0)> and
p̄ = (1/2, 1/2, 0)>, respectively, see Fig. 1. Note that
the center points are placed in Ω2 which allows to
take Ω2 as a model for a cross-sectional 3D problem.

Figure 1. Geometry setup for the BVP

For the 3D problem, we set the following forcing
function, i.e. the space charge density2:

f3(x) =


1, in B1,

−1, in B2,

0, else.

The 2D case of the forcing function f : Ω2 → R is
generated by f2(x1, x2) := f3(x1, x2, 0).

4.1. Homogeneous Conductance. Firstly, we con-
sider the simplest case, i.e. γ ≡ 1. Fig. 2 shows the
two-dimensional electrostatic potential u2.

Figure 2. Solution u2 of the 2D BVP

Its pendant, namely the potential u3|Ω3 is given in
Fig. 3. The difference in behavior of the potentials u2

and u3|Ω2 is clearly seen, note the color bar.

Figure 3. Solution u3|Ω2 of the 3D
BVP restricted to the slice Ω2

2COMSOL notation: es.rhod
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In addition, applying the procedure introduced in
Section 3 we solve numerically the 2D BVP for the
adapted PDE

div(∇uh
2 (x)) + h(x+ p)− h(x+ p̄) = f2(x),

see Fig. 4.

Figure 4. The solution uh
2 of a 2D

BVP applying h.

4.2. Inhomogeneous conductance. Now we re-
turn to the origin problem (1) and assume small in-
homogeneities in the electrical conductance function,
i.e. we consider

div(γ∇uh
2 (x)) + h(x+ p)− h(x+ p̄) = f2(x).

Note, that the forward operator, i.e. the map describ-
ing the relation between γ and the pair (un, fn) is
Lipschitz continuous w.r.t. γ, see [3]. That means, for
fixed f small perturbations in γ involve small change
in un. Thus, the procedure introduced is restricted
not too strong, as seems in Section 2.1.

5. Discussion. In Remark 3.1, we emphasized that
the function h does not satisfies the boundary condi-
tion. For special domain geometries and constant γ
this defect can be corrected by means of Green repre-
sentation theorem:

Theorem 5.1. Let un ∈ C2(Ωn). Then, for x ∈ Ωn

it holds

un(x) = −
∫
Ωn

Φ(x− y)4u(y) dx +

+

∫
∂Ωn

(Φ(x− z)∇zu(z)− u(z)∇zΦ(x− z)) · ν ds(z).

That means, every solution of the Poisson equation
−4u = f gets unique by the Neumann boundary con-
dition ∂un/∂ν and the Dirichlet boundary condition

un on ∂Ωn. Applying Green’s functions instead of
the fundamental solutions, yields the Poisson formula
for computing un for Neumann or Dirichlet BVP. For
simple domains, like disc in R2 or a ball in R3, this
representation is even analytical. So, for 2D Dirichlet
BVP

Problem 2. Let K = {x ∈ R2 : ‖x‖ < b}. Find
u2 ∈ C2(K) ∩ C1(K) such that

4u2 = 0, in K,

u2 = g2, on ∂K.

the solution reads in polar coordinates

u2(r, θ) =
a2 − r2

2π

∫ 2π

0

g2(θ
′)

a2 − 2ar cos(θ − θ′) + r2
dθ′,

where (r, θ) ∈ [0, b]× [0, 2π). In spherical coordinates,
the corresponding potential in a three-dimensional
ball is given by

u3(r, θ, ϕ) =
1

4π
b3(1− ρ2

a2
)

·
∫ ∫

g3(θ
′, ϕ′) sinϕ′

(b2 + ρ2 − 2bρ cos θ)3/2
dθ′ dϕ′,

with (r, θ, ϕ) ∈ [0, b] × [0, π] × [0, 2π) and cos θ =
cosϕ− cosϕ′ + sinϕ sinϕ′ cos(θ − θ′). Using this for-
mula, we can improve h and reduce further the differ-
ence between 2D and 3D problems.

6. Conclusion and Future Study. Considering
the introduced idea in a setup of inverse problems,
one can obtain a fast reconstruction algorithm. So,
the new equation

div(γ∇u2) + h = f2

instead of

div(γ∇u3) = f3

can be applied for solving an inverse cross-sectional 3D
problem, i.e. to get γ|Ω2 from boundary measurement
u3|∂Ω2 approximatively, however essential faster.
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