

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene

<u>M. Beckmann-Kluge¹</u>, F. Ferrero¹, V. Schröder¹, A. Acikalin² and J. Steinbach², **BAM Federal Institute for Materials Research and Testing**,

²Technical University Berlin

- I. Introduction to topic and motivation
- II. Numerical Model with REL and Comsol Multiphysics
- III. Results of different numerical approches
- IV. Conclusion and outlook

Introduction to TFE

- Tetrafluoroethylene (TFE, C₂F₄) is monomer of Polytetrafluoroethylene (PTFE) and other copolymers (100.000 t/year)
- PTFE is resistant to most reactive and corrosive chemicals and has non-sticky properties

Motivation

- Several incidents in PTFE-production-plants in the last decades
- TFE is a decomposable gas \rightarrow possibility of explosive decomposition
- Sources for ignition:
 - Spark ignition, electrostatic
 - Hot surfaces \rightarrow content of this work
- Research project subsidized by *PlasticsEurope* to determine hazardous conditions, started 2007
- Exothermic Dimerization reaction of TFE to Octacyclofluorobutane can cause ignition

$$2C_2F_4 \leftrightarrow c - C_4F_8$$

$$H_R = -103 \left(\frac{kJ}{mol_{TFE}} \right)$$

• FEM simulation without fluid dynamic

• Easy integration of complex reaction kinetics

• Thermodynamic properties are calculated via the NASA polynomial coefficients

• Energy and mass balance are solved

Validation data base by experiments

1st Model: Dimerization – Reaction

forward reaction

2. order reaction

$$2C_2F_4 \xrightarrow{f} c - C_4F_8$$

 $r_f = (c_{C_2F_4})^2 \cdot k_f$ \searrow New 2-stage kinetics was determined

backward reaction

$$c - C_4 F_8 \xrightarrow{b} 2C_2 F_4$$

1. order reaction

$$k_f = 2,1 \cdot 10^{16} \left[\frac{\text{m}^3}{\text{mol} \cdot \text{s}} \right] \cdot \exp^{\left(\frac{-310961 \text{[J/mol]}}{RT} \right)}$$

 $k_f = 82800 \left[\frac{\text{m}^3}{\text{mol} \cdot \text{s}} \right] \cdot \exp^{\left(\frac{-105200 \text{[J/mol]}}{RT} \right)}$

$$r_b = c_{c-C_4F_8} \cdot k_b$$

Enhanced reaction net in REL and COMSOL CFD Model

		A0 in		$\Delta {H}_{r}^{0}$	$\Delta {H}_{r}^{0}$
Reaction	RO	[m³ mol-1 s-1] bzw. [s-1]	Ea in [J/mol]	acc. NIST [kJ/mol]	acc. REL (NASA Polynoms)
C2F4+C2F4 → C4F8	2	8.28E+04	105000	-166 (-116171)	-161,5
C4F8(c) → 2*C2F4	1	2.10E+16	310871	166 (116171)	161,5
$C4F8(c) \rightarrow C3F6(e)+CF2$	1	1.58E+17	332580	154,3	164
$C3F6(e) \rightarrow C2F4 + CF2$	1	1.58E+13	346008	308,7	288
$C3F6(c) \rightarrow C2F4 + CF2$	1	1.78E+13	161501	308,7	288
C3F6(e) → C3F6 (c)	1	1.00E+13	139767	-	-
C2F4 → 2*CF2	1	5.01E+16	301285	297	290,6
$\begin{array}{c} C4F8(c) + CF2 \rightarrow C3F6(e) + \\ C2F4 \end{array}$	2	1.00E+08	133032	-142,7	-126,5
C4F8(i) → 2* C2F4	1	1.00E+16	374070	309	
C4F8(i) → C3F6(e)+ CF2	1	1.20E+16	384962	297,3	

Reaction Engineering Lab Model

Prediction of the MITD with the REL method

experimental MITD = 310 °C, 5 bar, 0.2-dm³

COMSOL Conference, Paris, 17.11.2010 – 19.11.2010

Conclusions from REL method

<u>Pro</u>

- Easy to calculate
- Volume of vessel is considered
- Height of vessel can be considered (via alpha)
- Complex reaction net possible
- All predicted MITD on the safe side

<u>Contra</u>

- No fluid dynamic considered (buoyancy)
- Geometry specification can only be considered in calculation of alpha
- Prediction of MITD might be to conservative

FEM Model: Enhanced reaction net in COMSOL Multiphysics 0,1 ← C2F4+C2F4 --> C4F8 0,09 -C4F8(c) -->2*C2F4 0,08 ▲ C4F8(c) -->C3F6(e)+CF2 0,07 k in s⁻¹ bzw. m³mol⁻¹s⁻¹ * 0,06 0,05 0,04 * 0,03 * 0,02 -C4F8(i) -->2*C2F4 0,01 0 300 500 700 900 1100 1300 T in K

additional reactions are important in the relevant temperature range (green)

Enhanced reaction net in COMSOL CFD Model

- 4 additional reactions and two additional species were integrated
- New reaction net shows very good numerical results
- Additional reactions prevent a too early runaway at lower temperatures
- At higher temperatures the primary dimerization reaction generates a runaway ignition of decomposition reaciton

Enhanced reaction net in COMSOL CFD Model

- New model shows for the volumes of 0.2-dm³ and 3-dm³ a maximal deviation of 10 K in the MITD
- For both volumes a pressure peak in the simulation could be observed and was taken as the ignition criterion

Enhanced reaction net in COMSOL CFD Model

Comparison of CFD Simulation and experimental values, 0.2 dm³

Enhanced reaction net in COMSOL CFD Model - results

Comparison of CFD Simulation and experimental values, 3 dm³

Conclusions from CFD method

<u>Pro</u>

- Most accurate prediction of MITD
- Complex geometries can be considered
- Complex fluid flow possible
- Complex reaction kinetics possible
- Partially heating possible

<u>Contra</u>

- Intense knowledge of software is necessary
- Long computational times
- Not applicable on standard PC

Outlook

Validation in larger volumes

- Tests in 100-dm³-vessel
- Vessel is fixed in rotational rack
- Tests for MITD in horizontal and vertical orientation will be carried out
- Prediction with COMSOL REL and Multiphysics was done
- MITD dependence on variation in geometry for simil volumes could be found when using COMSOL Multiphysics

100-dm³ vessel: construction

100-dm³ vessel: Simulation of MITD, 5 bar TFE

Ignition criterion based on exponential pressure increase

100-dm³ vessel simulation: MITD dependence on geometry

Simplified geometry

real geometry

100-dm³ vessel simulation: MITD dependence on geometry

Comparision of p-t curves for different geometries (similar volume)

MITD dependence on pressure for 100-dm³-vessel

