

Combustion of Kerosene-Air Mixtures in a Closed Vessel

C. Strozzi, J.M. Pascaud, P. Gillard

Prisme – University of Orléans, 63, avenue de Lattre de Tassigny, 18020 BOURGES Cedex, France

Comsol Conference 2010

Combustion of Kerosene-Air Mixtures in a Closed Vessel

Multi-Compartment Tank filled with kerosene vapours mixed with air at various initial temperatures and pressures according to the height of flight

Introduction

✓ This is a study performed in the frame of a contractual work (DGA contract N°2007 25 009 000 51 00 00).

Aims of the study

- ✓ Vulnerability of aircraft tanks submitted to a projectile
 - ☑ (i) Ignition
 - ☑ (ii) dynamics of combustion (final pressure, combustion duration)
- These data have to be used as input data for structure vulnerability studies

COMSOL MultiPhysics 3.4 (4.0) used to **determine the sensitivity of the combustion process** to:

- ✓ Ignition parameters (Position, Size and energy distribution)
- ✓ The geometry (with internal obstacles)
- **√** ...

3

Outlines of the presentation

- 1. Description Of The Physical Model
 - a) Basic equations
 - b) Kinetic and Fluid properties
 - c) Representation of ignition source
- 2. Model Calibration and validation

- 3. Numerical Results for a Multi-Compartment Tank
- 4. Conclusions

Description Of The Physical Model

Assumptions:

- Laminar and weakly compressible fluid flow.
- Ideal gas, pressure vapor of kerosene in equilibrium with liquid (initial condition)
- Liquid phase is not considered during combustion
- One step reaction of combustion

1) Mass continuity eq.:
$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \bullet (\rho \vec{V}) = 0$$

(1) Mass continuity eq.:

$$\rho \frac{\partial \vec{V}}{\partial t} + \rho \vec{V} \bullet \vec{\nabla} \vec{V} = \vec{\nabla} \bullet \left[-PI + \eta (\vec{\nabla} \vec{V} + (\vec{\nabla} \vec{V})^T) - \frac{2}{3} \eta (\vec{\nabla} \bullet \vec{V})I \right]$$

(2) Navier-Stokes eq.:

$$\frac{\partial C}{\partial t} + \vec{\nabla} \bullet (C\vec{V} - D\vec{\nabla} C) = -\omega$$

(3) Fuel transport eq.: (Diffusion & convection)

$$\rho C_p \left(\frac{\partial T}{\partial t} + \overrightarrow{V} \bullet \overrightarrow{\nabla} T \right) - \frac{\partial P}{\partial t} = q + \overrightarrow{\nabla} \bullet (\lambda \overrightarrow{\nabla} T)$$

(4) Thermal transport eq.: (Conduction & convection)

Heat production rate q (W/m³) linked to the reaction rate ω : $\mathbf{q} = \omega \mathbf{M} \mathbf{p} \mathbf{Q} + \mathbf{q} \mathbf{i} \mathbf{g} \mathbf{n}$.

Kinetic and Fluid properties, Ignition parameters

Simple kinetic:
$$C_x H_y + mO_2 \rightarrow xCO_2 + \frac{y}{2}H_2O + (m - \frac{y}{4} - x)O_2$$

Najjar (1981) kinetic law: $\omega = AP^{0.3}T[C_xH_y]^{\alpha}[O_2]^{\beta} \exp(-E_a/RT)$

Physico-chemical data

$$\eta$$
 (Pa.s) = 1.156. 10^{-6} exp(1285.15/T) D (m^2/s) = 3.95. 10^{-4} . $T^{3/2}P^{-1}$ λ (W/mK) = $-4.82.10^{-9}$ T² + 5.81. 10^{-5} T + 7.53. 10^{-3}

Cp=f(T,C): dependence to temperature and composition (unburned/burned gases). (Gaseq computations, stoechiometric n-decane/air mixture, adiabatic combustion).

Ignition model

Supply of a heat flux q_{ign} : Gaussian-like space-time distribution.

Total energy provided:

$$E_{ign} = 2\pi\sigma^2 q_{ign}^o$$

Space distribution

Time distribution

Outlines of the presentation

- 1. Description Of The Physical Model
 - a) Basic equations
 - b) Kinetic and Fluid properties
 - c) Representation of ignition source
- 2. Model Calibration and validation

- 3. Numerical Results for a Multi-Compartment Tank
- 4. Conclusions

Validation and calibration

First Case: open tube (1D)

- ✓ S_u= 0.15 m/s
 → consistent burning velocity
 for a stoichiometric mixture in similar conditions (0.2-0.4 m/s)
- ✓ But thin mesh!
 (dx=0.068 mm ≈ flame width / 10)
 → a 1m² tank computation is out of reach (2e8 cells!)
- ✓ Problem: for coarser meshes, the solution becomes dependant on the cell size!

- ☑ Coarse mesh (dx=20 mm)
- ☑ Reduced reaction rate (x10⁻³)

Temperature profiles at several instants (dt=0.005s) within an open tube. (1D computation, dx=0.068mm)

Influence of the cell size on the pressure evolution for a closed vessel (0.1x0.05m, 2D computation).

Validation and calibration

Validation of the results: 1x0.2 m closed vessel (2D)

✓ Qualitative behavior

- Concentration and velocity profiles across the flame
- ☑ Flame propagation

Temperature field at 0.06s.

✓ Quantitative results

- ☑ Burning velocity: consistent with experiment Su=0.2-0.4m/s
 (1m of mixture burned in 3s)
- ✓ Temperature fields: locally overestimated (2700-4000K)
 (adiabatic, V=cst temperature: 2900K)
- ☑ Final pressure: good results
 PComsol=14.1 bar; PGaseq=14.4 bar
 (0D adiabatic, V=cst)
- ✓ Model validated for 2D computations of pressure evolution (laminar conditions).

Pressure evolution (1 m x 0.2 m)

Outlines of the presentation

- 1. Description Of The Physical Model
 - a) Basic equations
 - b) Kinetic and Fluid properties
 - c) Representation of ignition source
- 2. Model Calibration and validation
- 10
- 3. Numerical Results for a Multi-Compartment Tank
- 4. Conclusions

Results for A Multi-Compartment Tank

Geometry, mesh, initial and boundary conditions

Geometries: 26L / compartment, orifices (~50% area blockage)

Boundary conditions: Adiabatic, non-slipping conditions at the walls.

Initial conditions: T_0 =320.5K and P_0 =1.5 bar (stoichiometry)

Ignition: radius of the ignition zone is = 5 mm (area a=0.78cm²)

An energy of E_{ign} =157J is deposited during 5 ms.

Solving: (V3.4) UMFPACK or (V4) PARDISO + non linear damping.

23/11/2010

Results for A Multi-Compartment Tank: Influence of tank geometry

Results for A Multi-Compartment Tank: Influence of tank geometry

23/11/2010

13

Temperature fields at several instants for a 2x5 compartments tank

Results for A Multi-Compartment Tank: Influence of tank geometry

✓ Final pressures agree with the 0D adiabatic constant volume case.

Relevant even with several compartments since :

- ☑ The blockage area is moderate
- All the compartments feature the same volume (no pressure-pilling, see [Benedetto et al])

- ✓ Highest rates of pressure rise obtained for multi-compartment tanks
 - Acceleration of the combustion process in presence of internal orifices well reproduced [Ciccarellia et al]
 - ✓ The largest tank features the fastest pressure rise.
 → unexpected as in the 1D case combustion duration decreases with volume

Conclusion

- ✓ A single model describes both ignition and laminar flame propagation.
- ✓ The model is calibrated and validated for such large geometries
 - ✓ Flame velocity in the suitable range for a laminar combustion
 - ☑ Final pressures accurately reproduced
- ✓ Influences of tank geometry is also analyzed:
 - ✓ Internal obstacles accelerate the combustion process.
 - ✓ Influence of volume is not straightforward
- ✓ This model is highly flexible and allows various simulations in a context of safety applied to aircrafts with kerosene tanks.

In progress

- ✓ Tank draining of through vents
- ☑ Heat exchange with walls
- ☑ Turbulence and/or large scale combustion methods

Thank you for your attention

✓ References

- ✓ Najjar YSH, Goodger EM, Soot formation in gas turbine using heavy fuels, Fuel, 60, 980, (1981).
- ☑ Gaseq v0.79, A chemical equilibrium program for windows, (2005), www.gaseq.co.uk.
- ☑ Benedetto A.D., Salzano E., CFD simulation of pressure piling, Journal of Loss Prevention in the Process Industries, 23, 498 506 (2010).
- ☑ Ciccarellia G, Dorofeev S., Flame acceleration and transition to detonation in ducts, Prog Energ Combust Sci, 34, 499–550 (2008).