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Applications for Fracture Models 
 Material Science

 Concrete
 Pavement 

 Micro-Technology
 Low permeable materials
 Low permeable membranes

 Fractured rocks in geological systems
 Subsurface waste repositories
 Geothermics

 Medicine
 Bones
 Teeth

Wang 2008

see: Jung, Orzol, Schellschmidt



  

Classification of Fracture Models

Diodato (1994) suggests a 
classification into 

 explicit discrete fracture formulations
 discrete fracture networks
 continuum formulations

 conc. fracture dimensionality
 
 full dimensional
 lower dimensional

HYDROCOIN 1.2

Wang et. al. 2008



  

Pde - Flow Options

 Matrix 
o    no-flow
o    Darcy‘s Law

 Fracture 
o    Darcy‘s Law
o    Hagen-Poisseuille Laws

• tubes
• slices

o    Navier-Stokes equations
o    Brinkman equations
o    Saint-Venant equations
o    Preissman scheme

Example: Brinkman equation
(steady state)

with symbols
u Darcy velocity
k permeability tensor
η dynamic viscosity
p pressure
θ porosity
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Differential Equations & 
Non-dimensionalisation 
Matrix:

 low hydraulic conductivity

Fracture: 
 

  high hydraulic conductivity

Normalization:

  normalized velocity

  normalized length

0lowK ϕ∇ ∇ =

0highK ϕ∇ ∇ =

1/low highK K=

0 matrix fracturev K K=

 (height)H



  

Set-up 1

Thin fracture in a constant flow field
Mathematical approach: Darcy‘s Law in Fracture and Matrix

Flow

Fracture



  

Analytical Solution

with

Complex potential for an impermeable line obstacle 
according to Churchill & Brown (1984):

2 2( ) ( cos( ) i sin( ))oz z z aα αΦ = Φ − −

α angle fracture – baseflow direction
a half length of fracture
Φ0 baseflow potential

Modification for a highly permeable fracture:
2 2( ) i ( cos( ) i sin( ))oz z z aα αΦ = − Φ − −

See also: Sato (2003)

Complex potential contains real potential ϕ in real part 
and streamfuntion Ψ in imaginary part
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MATLAB Visualization

Jump in streamfunction: high

low

K d
K s

ϕ+ − ∂Ψ − Ψ =
∂

Isopotential 
linesStreamlines = 

Contours of 
Streamfunction

potential



  

Numerical Solution

2D Geometry
 (di) total domain: diffusion equation for real potential ϕ 
 (di1) upper part: diffusion equation for streamfunction Ψ
 (di2) lower part: diffusion equation for streamfunction Ψ

1D Geometry (for lower dimensional case)
 (di0) diffusion equation for real potential ϕ

Couplings:
 di-di0: solutions identical at fracture (B1) 
 di1-di2: jump condition at fracture boundary, based on solution 
of di (B1)
 di1-di, di2-di: total flux as boundary condition for Ψ taken from 
solution of di (boundary integration)

Couplings are introduced using integration and extrusion variables



  

Set-up 1, Numerical Solution

Streamlines 
analytical

Streamlines 
numerical

Particle 
Tracing

Velocity 
Field



  

Set-up 2

Coupled potential equations for (real) potential and streamfunction 

Flow

Fracture



  

Meshing

local

all

for 2D full-dimensional
elliptic fracture
with half-axes ratio 1/400



  

Results; Variation of Kratio

Angle: 45°
Width: 0.01 
Kratio   : 100 (top)
  and 10000 (bottom)

1D 
lower-dimensional
fracture



  

Comparison: 1D and 2D model 
approach for fracture

1D

2D

Angle: 45°
Kratio   : 100
Width: 0.01

• Colour for (real) potential
• Streamlines from 
streamfunction
• Arrows from potential 
gradient



  

Comparison: Performance 3.4
Fracture 

Dimension
Kratio

=Khigh/Klow

# 
DOF

# 
elements

# it. Exec. Time 
(s)

1D 100 155486 38048 5 69-112-
120-172

2D 100 321176 80229 3 222-257-
260-341

1D 10000 155486 38048 13 129-156-
218-411

2D 10000 321176 80229 3 121-177-
197-329

Free mesh: normal
Maximum meshsize in fracture: 0.001
Starting from initial
Solvers: direct Spooles (linear), damped Newton (nonlinear)
Required accuracy: 10-6



  

Comparison: Performance 3.5a

Fracture 
Dimension

Kratio

=Khigh/Klow

# 
DOF

# 
elements

# it. Exec. Time 
(s)*

1D 100 155486 38048 5 17.8

2D 100 321176 80229 3 27.8 

1D 10000 155486 38048 32 104 

2D 10000 321176 80229 3 26.9

Free mesh: normal
Maximum meshsize in fracture: 0.001
Starting from initial
Solvers: direct Spooles (linear), damped Newton (nonlinear)
Required accuracy: 10-6

* mean from 4 runs



  

Evaluation Set-up 2
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Increased Flux – compared to the no-fracture situation
   in dependence of Kratio and fracture angle (in legend given as slope) 



  

Animation of Heat Transfer

Cold water replacing hot water from the left side
Times: 20, 40, 60 (top); 80, 100, 120 (bottom)

obtained with 2D fracture representation with constant width

20 40 60

80 100 120



  

Conclusions 
 For lower-dimensional fracture representations 

streamlines through fractures can not be obtained 
by particle tracking from the (real) potential 
solution

 Streamlines can be obtained by either using a 
full-dimensional approach or using the lower-
dimensional streamfunction with jump condition at 
the fractures

 Execution time of 2D approach, despite of higher 
DOF, is smaller and this advantage is more 
pronounced for finer meshes



  

Conclusions conc. fracture networks from 
lower dimensional fractures

  Numerical solutions for lower and full-
dimensional solutions coincide.

  For single lower-dimensional fracture numerical 
solutions converge against analytical solution for 
Kratio→∞

 but: analytical solutions can not be combined for 
fracture networks (even not non-intersecting); 

 for numerical solutions, including streamfunction, 
the entire model region has to be sub-divided in 
simply connected sub-regions.

Merci beaucoup


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20



