

COMSOL Conference 2010, Nov. 17-19, Paris

Modelling Flow through Fractures in Porous Media

Holzbecher Ekkehard Wong LiWah Litz Marie-Sophie

Georg-August-University Göttingen, Geological Sciences, Goldschmidtstr. 3, Göttingen, Germany

Applications for Fracture Models

- Material Science
 - Concrete
 - Pavement
- Micro-Technology
 - Low permeable materials
 - Low permeable membranes
- Fractured rocks in geological systems
 - Subsurface waste repositories
 - Geothermics
- Medicine
 - Bones
 - Teeth

see: Jung, Orzol, Schellschmidt

Classification of Fracture Models

Diodato (1994) suggests a classification into

- explicit discrete fracture formulations
- discrete fracture networks
- continuum formulations

conc. fracture dimensionality

- full dimensional
- Iower dimensional

Pde - Flow Options

Matrix

- o no-flow
- 0 Darcy's Law

Fracture

- o Darcy's Law
- 0 Hagen-Poisseuille Laws
 - tubes
 - slices
- Navier-Stokes equations
- 0 Brinkman equations
- Saint-Venant equations
- o Preissman scheme

Example: Brinkman equation (steady state)

$$\frac{\eta}{\mathbf{k}}\mathbf{u} + \nabla p - \frac{\eta}{\theta}\nabla \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T\right) = \mathbf{0}$$
$$\nabla \cdot \mathbf{u} = \mathbf{0}$$

with symbols

- u Darcy velocity
- **k** permeability tensor
- η dynamic viscosity
- *p* pressure
- θ porosity

Differential Equations & Non-dimensionalisation

Matrix: $\nabla K_{low} \nabla \varphi = 0$

Iow hydraulic conductivity

Fracture: $\nabla K_{high} \nabla \varphi = 0$

high hydraulic conductivity

Normalization: $K_{low} = 1/K_{high}$

 \clubsuit normalized velocity V

$$V_0 = \sqrt{K_{matrix} K_{fracture}}$$

* normalized length H (height)

Thin fracture in a constant flow field

Mathematical approach: Darcy's Law in Fracture and Matrix

Analytical Solution

Complex potential for an impermeable line obstacle according to Churchill & Brown (1984):

$$\Phi(z) = \Phi_o(z\cos(\alpha) - i\sqrt{z^2 - a^2}\sin(\alpha))$$

with	α	angle fracture – baseflow direction
	а	half length of fracture
	$\mathbf{\Phi}_{_{ heta}}$	baseflow potential

Complex potential contains real potential φ in real part and streamfunction Ψ in imaginary part

Modification for a highly permeable fracture:

$$\overline{\Phi}(z) = -i\Phi_o(z\cos(\alpha) - i\sqrt{z^2 - a^2}\sin(\alpha))$$

See also: Sato (2003)

MATLAB Visualization

Numerical Solution

2D Geometry

- (di) total domain: diffusion equation for real potential φ
- * (di1) upper part: diffusion equation for streamfunction Ψ
- * (di2) lower part: diffusion equation for streamfunction Ψ

1D Geometry (for lower dimensional case)

* (di0) diffusion equation for real potential φ

Couplings:

- * di-di0: solutions identical at fracture (B1)
- di1-di2: jump condition at fracture boundary, based on solution of di (B1)
- total flux as boundary condition for Ψ taken from solution of di (boundary integration)

Couplings are introduced using integration and extrusion variables

Set-up 1, Numerical Solution

Coupled potential equations for (real) potential and streamfunction

Meshing

for 2D full-dimensional elliptic fracture with half-axes ratio 1/400

Results; Variation of K_{ratio}

Angle: 45° Width: 0.01 K_{ratio} : 100 (top) and 10000 (bottom)

1D lower-dimensional fracture

Comparison: 1D and 2D model approach for fracture

1D

- Colour for (real) potential
- Streamlines from streamfunction
- Arrows from potential gradient

Comparison: Performance 3.4

Fracture Dimension	K _{ratio} =K _{high} /K _{low}	# DOF	# elements	# it.	Exec. Time (s)
1D	100	155486	38048	5	69-112- 120-172
2D	100	321176	80229	3	222-257- 260-341
1D	10000	155486	38048	13	129-156- 218-411
2D	10000	321176	80229	3	121-177- 197-329

Free mesh: normal

Maximum meshsize in fracture: 0.001

Starting from initial

Solvers: direct Spooles (linear), damped Newton (nonlinear)

Required accuracy: 10⁻⁶

Comparison: Performance 3.5a

Fracture Dimension	K _{ratio} =K _{high} /K _{low}	# DOF	# elements	# it.	Exec. Time (s)*
1D	100	155486	38048	5	17.8
2D	100	321176	80229	3	27.8
1D	10000	155486	38048	32	104
2D	10000	321176	80229	3	26.9

Free mesh: normal Maximum meshsize in fracture: 0.001 Starting from initial Solvers: direct Spooles (linear), damped Newton (nonlinear) Required accuracy: 10⁻⁶

* mean from 4 runs

Evaluation Set-up 2

Increased Flux – compared to the no-fracture situation in dependence of K_{ratio} and fracture angle (in legend given as slope)

Animation of Heat Transfer

Cold water replacing hot water from the left side Times: 20, 40, 60 (top); 80, 100, 120 (bottom)

obtained with 2D fracture representation with constant width

Conclusions

- For lower-dimensional fracture representations streamlines through fractures can not be obtained by particle tracking from the (real) potential solution
- Streamlines can be obtained by either using a full-dimensional approach or using the lowerdimensional streamfunction with jump condition at the fractures
- Execution time of 2D approach, despite of higher DOF, is smaller and this advantage is more pronounced for finer meshes

Conclusions conc. fracture networks from lower dimensional fractures

- Numerical solutions for lower and fulldimensional solutions coincide.
- For single lower-dimensional fracture numerical solutions converge against analytical solution for $K_{ratio} \rightarrow \infty$
- but: analytical solutions can not be combined for fracture networks (even not non-intersecting);
- for numerical solutions, including streamfunction, the entire model region has to be sub-divided in simply connected sub-regions.

Merci beaucoup