Presented at the COMSOL Conference 2010 Paris

COMSOL MULTIPHYSICS

Crystal growth set-up for Microelectronic process

Jean-Marc Dedulle (iris.dedulle@wanadoo.fr) : IRIS Technologies

Geometric Model : Hypothesis

- 2D cylindrical geometry to obtain optimize coil
- For induction heating model 2D axi

Physical Model : induction heating

- Electromagnetic
- Quasi-static approximation (σ >> $\epsilon\omega$) in 2D axi
- Thermal radiation with ambient and in cavity in 2D axi

Numerical model : strong coupling

- Vector potential formulation complex unknown
- Temperature formulation non linear problem (T⁴, σ (T)) in 3D
- Radiative flux with view factor

Coil Design

Mathematical model : Partial derivative equation

$$\vec{\underline{A}} / \vec{\underline{B}} = \operatorname{rot} \vec{\underline{A}} \left(\operatorname{flux \ conservation} : \operatorname{div} \vec{\overline{B}} = 0 \right)$$
$$\vec{\operatorname{rot}} (\vec{\operatorname{rot}} \vec{\underline{A}}) + j\mu_0 \sigma(T) \omega \vec{\underline{A}} = \mu_0 \sigma(T) \operatorname{grad} \underline{V}$$

2D cylindrical geometry

$$\vec{\underline{J}} = \begin{pmatrix} 0 \\ \underline{J}_{\theta}(\mathbf{r}, \mathbf{z}) \\ 0 \end{pmatrix}$$

Comsol Mult<u>iphysics</u>

Coil Design

In order to design coil we needed losses in the copper Voltage supply and computation of eddy currents in coil $\overrightarrow{J}_{total} = -j\sigma(T)\omega\underline{A} + \sigma(T)\operatorname{grad} \underline{V}$

Turn coil are in a serial electric scheme : $I_1 = I_2 \dots$

ddp per turn coil imposed : **DV**_i

Constraint for an integral property :

$$I_i = \int_{S} \overrightarrow{J}_{total_i} \cdot \overrightarrow{dS}_i$$

Adjustement of DV_i, in order to respect constraint

COMSOL

Physical properties

Pi Paramètres

Paramètres

Nom	Expression	Valeur	Description
sigma_isolation	2e3[S/m]	2000 S/m	
sigma_poudre	1e4[S/m]	10000.0 S/m	
IO	300[A]	300 A	
k_isolation	1	1	
k_graphite	10	10	
k_poudre	25	25	
FREQ	50000[Hz]	50000.0 Hz	

Propriétés de sortie

Propriété	Variable	Expression	Unité	T. 🔺
Conductivité électrique	{siga33}	sigma_graphite	S/m	3x ≡
Perméabilité relative	{mu33}	1	1	Зx
Permittivité relative	{eps33}	0	1	3x 👻
•				- P-

슈 사 🗙 🏢

Expression:

 Entrées du modèle Quantité physique Variable Température т

☆ ♣ 🗙

Frequency=50kHz Paramètres locaux Paramètre Expression Unité 70000/(0.375+0.00035*T+144.7/T) sigma_graphite 710⁴ $3.510^{-4} \overline{\mathrm{T}} + 0.375 + \frac{144.7}{-1} \Omega^{-1} .\mathrm{m}^{-1}$ σ_{graphite}

Constraint for an integral property Single turn domain

⊿ 🔯 four_v4.0.mph (root)	Domaine bobine monospire
a 😑 Définitions globales	
P _i Paramètres	Domaines
Modèle 1 (mod1)	
Définitions	Sélection: spire_1
K Géométrie 1	6 💊 🔺
Matériaux	
a 🧟 Champs magnétiques (emqa)	
🔄 Théorème d'Ampère 1	
📄 Axisymétrie 1	
🚺 Isolation magnétique 1	
Valeurs initiales 1	
🛅 Domaine bobine monospire 1	
🛅 Domaine bobine monospire 2	 Domaine bobine monospire
🛅 Domaine bobine monospire 3	Nom bobine:
🔲 Domaine bobine monospire 4	
	1
Maillage 1	Excitation bobine:
Etude 1	Courant
Résultats	Courant
	Courant bobine:
	I _{coil} I0 A
$I_i = \int J_{total_i} . dS_i$	
	\rightarrow \rightarrow
IS Technologies $J_{\text{total}} = -j\sigma(T)\omega \underline{A}$	$\underline{L} + \sigma(T) \operatorname{grad} \underline{V}$
-	

Single turn domain

COMSOL MULTIPHYSICS

Radiation flux in cavity

Radiation flux in cavity

Comsol Multiphysics

Mesh

IRIS Technologies

COMSOL MULTIPHYSICS

Solve

Comsol Multiphysics

Post-processing 3D

