

Design of Magnetoplasmonic Resonant Nanoantennas for Biosensing Applications

M. ESSONE MEZEME ^a and C. BROSSEAU ^b

Lab-STICC, Université de Bretagne Occidentale CS 93837, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France

^a melvin.essone@univ-brest.fr
^b brosseau@univ-brest.fr

Introduction (1)

Brosseau's group activities

- Electromagnetic wave transport in composite materials

- Multiscale modeling of biological cells

- Interface Physics-Biology (interaction electromagnetic wave - human body)

Earlier work [1-2] Cell Membrane disruption Cell division smooth endoplasmic reticulum vesicle mitochondria ribosomes nucleus rough endoplasmic reticulum plasma membrane glycoproteins Phospholipid bilayer Cytoplasm V_1 (j')(a') (b) (c) (d) (e) (a) $\frac{\partial V}{\partial n} = 0$ ∂V ∂n (i) $z \xrightarrow{\uparrow^{y}}$ (e') (a') I_{V_2}

[1] P. Salou, A. Mejdoubi, and C. Brosseau, J.Appl. Phys. 105, 114702 (2009)
[2] M. Essone Mezeme and C. Brosseau, J.Appl. Phys. 107, 014701 (2010), ibidem 108, 014701 (2010)

Introduction (2)

Introduction (3)

Design of new magneto-plasmonic core-shell nano-antennas

Au: ideal metal Fe_3O_4 : ferromagnetic oxide Au and Fe_3O_4 : biocompatible materials

Principles:

-**Plasmonic resonance**: surface plasmon excitation and energy confinement in very small length scale

-Gyromagnetic resonance: magnetic localization and microwave heating

Advantages:

-Controllable by ${\bf H}$

-Separation of length scales (cell size $\approx 10 \mu m$ and nanoantenna length $\approx 100 nm$)

-Confinement of electric field enhancement(≈ 40 nm)

Outline

1- Numerical model and simulation2- Results and discussion3- Concluding remarks

Numerical model and simulation (1)

Numerical model and simulation (2)

Assumptions:

-Long-wavelength physics $\lambda >>$ system size \rightarrow no scattering.

-Dielectric properties of biological material assimilated to water

-Continuum medium approach

 ε_2 and ε_3 : Drude model

 $\mu_1 = \mu_2 = 1$

 μ_3 : Landau-Lifshitz-Gilbert relaxation model

Effective permittivity:

$$\varepsilon = \frac{1}{(V_2 - V_1)^2} \iint_{S} \varepsilon_k(x, y) \left(\left(\frac{\partial V}{\partial x} \right)^2 + \left(\frac{\partial V}{\partial y} \right)^2 \right) dx dy$$

Effective permeability:

$$\mu = \frac{1}{(H_{app}L)^2} \iint_{S} \mu_k(x, y) H^2(x, y) \, dx \, dy$$

Results and discussion (1)

GYR: Gyromagnetic resonance

Magnetic Field Enhancement (MFE) MFE= $|H|/|H_{app}|$

8

9

Results and discussion (2)

Electric Field Enhancement (EFE) $EFE=|E|/|E_{app}|$

Influence of shape

	Kesuits and	
Parameters	2-dimensional	3-dimensional
F _{GYR}	4.5 GHz	4.5 GHz
F _{PLR}	250 THz	100THz
MFE	1.5	1.8
EFE	199	773
Confinement length	20nm	40nm
Au concentration	3.5%	0.6%
Fe ₃ O ₄ concentration	7.0%	1.4%

EFE at PLR

MFE at GYR

10

Concluding remarks (1)

11

Magneto-plasmonic core-shell nano-antennas are based on:

- Magnetic core:-Controllable by H-Useful for local microwave heating (hyperthermia)
- **Plasmonic shell:** -Induces a localized enhancement of **E** on 40nm -Optically detectable

Perspectives

Concluding remarks (2)

12

Possible experimental realization of optical antennas using stuffed carbon nanotube :

K. Kempa et al. Adv. Mater. 19, 421-426 (2007)

Acknowledgement:

The Conseil Régional de Bretagne is thanked for the funding of this project

