Presented at the COMSOL Conference 2010 Paris

THERMAL STUDY OF AN INTEGRATED TARGET TO AN ELECTROMAGNETIC HORN

Benjamin Lepers IPHC Strasbourg

November 8, 2010

Benjamin Lepers

Comsol conference 2010

November 8, 2010 1 / 18

FIGURE: Euron ν project: Neutrino factory schematic

- Neutrino factory project
- Electromagnetic horn with integrated target: working principle
- Goal: determine the cooling requirement to maintain the max temperature below a limit
- Model: equations, heat sources, boundary conditions, assumptions
- Results
- Summary/conclusion

ELECTROMAGNETIC HORN

a) CERN Horn prototype

b) electrical connections and water inlet/outlet

ELECTROMAGNETIC HORN

- High pulsed currents: peak currents 300kA, pulse duration 100µs ⇒ AC currents, skin depth; joule losses, magnetic field, magnetic pressure/force, vibrations, fatigue.
- Interaction target/proton beam: High power density deposit: $3kW/cm^3$. Pulse length: $5\mu s \Rightarrow$ thermal stress wave, fatigue, irradiation.
- Cooling circuit \Rightarrow convection heat transfer; fluid dynamics (turbulent), heat transfer
- Life time of the system \Rightarrow fatigue analysis.

MODEL-GEOMETRY

- electromagnetic horn to focus the pions
- integrated target
- 2 heat sources: beam + joule losses
- cooling circuit, impinging jets

- axi symmetric model, radius R = 1.5 cm, length L = 78 cm.
- boundary conditions: insulation + convection
- $\bar{h} = \{5, 10, 15, 20\} \text{ kW/(m^2K)}$

Benjamin Lepers

Comsol conference 2010

JOULE LOSSES, ANALYTIC

- Current flows between the surface and the skin depth
- Joule losses increase with smaller radius.

crosssection :
$$S = \pi \delta (2r_e - \delta)$$

skin depth : $\delta = \sqrt{\frac{2\rho}{\omega\mu}}$
resistance $\frac{R}{l} = \frac{\rho}{S}$
Power $\frac{P}{l} = R i_{rms}^2 = [108, 77.5, 64] kW/m$

for r = [1.1, 1.5, 1.8] cm, $\rho = 4.8 \times 10^{-8} \Omega m$ at 20 °C, $i_{rms} = 15$ kA, $\omega = 2\pi f = 2\pi \times 5000$ Hz

JOULE LOSSES, COMSOL MODEL

$$\nabla \times \mathbf{H} = \sigma \mathbf{E} + \frac{\partial \mathbf{D}}{\partial t}$$
$$\mathbf{B} = \mu \mathbf{H} = \nabla \times \mathbf{A}$$
$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$$

Time harmonic currents, equation reduced to:

$$\nabla \times \left(\frac{1}{\mu} \nabla \times \mathbf{A}\right) + (j\sigma\omega - \omega^2 \epsilon)\mathbf{A} = 0 \tag{1}$$

average volume energy density:

$$q_{elec} = \frac{1}{2}\rho \mathbf{J} \cdot \mathbf{J}^* = \frac{1}{2}\sigma \mathbf{E} \cdot \mathbf{E}^* = \frac{1}{2}\sigma \omega^2 \mathbf{A} \cdot \mathbf{A}^*$$

For time harmonic fields, the time average of the product of two vectors is:

$$\vec{\vec{A}}(\mathbf{r},t) \cdot \vec{\vec{B}}(\mathbf{r},t) = \frac{1}{2} Re(\mathbf{A} \cdot \mathbf{B}^*)$$

$$\vec{\vec{A}}(\mathbf{r},t) = Re(\mathbf{A}e^{j\omega t})$$
(2)
(3)

Benjamin Lepers

Comsol conference 2010

November 8, 2010 8 / 18

HEAT EQUATION, STEADY STATE

$$\nabla \cdot [k \nabla T(r, z)] + q(r, z) = 0$$

$$q(r, z) = q_{beam}(r, z) + q_{elec}(r, z)$$

k is the thermal conductivity.

• q_{beam} : power distribution inside the target, obtained with Fluka simulation. $P^{beam} = \{1, 4\}$ MW, proton kinetic energy 4.5 GeV, beam width $\sigma^{bm} = \{4, 6\}$ mm.

•	material	conductivity	σ^{bm}	<i>Q_{beam}</i>	Q _{elec}
		[W/mK]	[mm]	[kW]	[kW]
	Al	170	4	278	60
			6	256	60
	Be	80200	4	165	56.3
			6	153	56.3

q_{elec}: resistive loss with *i_{rms}* = 15 kA

Benjamin Lepers

Thermal: Heat conduction, 2d axisymmetric

- Thermal insulation *q* = 0 everywhere except on the surface *r* = 1.5 cm
- Convection cooling on the cylinder surface with $\bar{h} = \{5, 10, 15, 20\}$ kW/(m²K)

$$q=2\pi R L \bar{h} (T_s-T_\infty)$$

 T_s and T_∞ the surface and fluid temperature, q heat flux

Electrical: Meridional induction current, vector potential, 2d axisymmetric

•
$$z = \{0, 0.78\}$$
 m, $r = 0$ m: $\nabla \times \mathbf{A} = 0$ ($A_{\perp} = 0$ and $B_n = 0$)

•
$$r = R$$
; surface current: $J_s = \frac{I_0}{2\pi R} = \frac{\sqrt{2} \times 15kA}{2\pi R}$

Benjamin Lepers

POWER DISTRIBUTION, ALUMINIUM

a) Al, 4 MW, $\sigma = 4 \text{ mm}$

b) Al,1 MW, $\sigma = 6 \text{ mm}$

FIGURE: Power density distribution in [W/m³] for $P^{beam} = \{1, 4\}$ MW and beam profile $\sigma = \{4, 6\}$ mm in Al target. Electrical current $i_{rms} = 15$ kA at 5000 Hz, for $z = \{0, 10, 30, 60\}$ cm (blue, green, red, light blue)

TEMPERATURE DISTRIBUTION, ALUMINIUM

FIGURE: Temperature distribution for $P^{beam} = \{1, 4\}$ MW and beam profile $\sigma = \{4, 6\}$ mm in Al target. Electrical current $i_{rms} = 15$ kA at 5000 Hz, for $z = \{0, 10, 30, 60\}$ cm (blue, green, red, light blue)

POWER DISTRIBUTION, BERYLLIUM

a) Be, 4 MW, $\sigma = 4 \text{ mm}$

b) Be,1 MW, $\sigma = 6 \text{ mm}$

FIGURE: Power density distribution in [W/m³] for $P^{beam} = \{1, 4\}$ MW and beam profile $\sigma = \{4, 6\}$ mm in Be target. Electrical current $i_{rms} = 15$ kA at 5000 Hz, for $z = \{0, 10, 30, 60\}$ cm (blue, green, red, light blue)

TEMPERATURE DISTRIBUTION, BERYLLIUM

FIGURE: Temperature distribution for $P^{beam} = \{1, 4\}$ MW and beam profile $\sigma = \{4, 6\}$ mm in Be target. Electrical current $i_{rms} = 15$ kA at 5000 Hz, for $z = \{0, 10, 30, 60\}$ cm (blue, green, red, light blue)

continue with $\bar{h} = \{5, 10, 15, 20\} \text{ kW/(m^2K)}$

Benjamin Lepers

Comsol conference 2010

TEMPERATURE VERSUS CONVECTION COEFF H, AL

- *T_{core}*, *T_s*: core and surface temperature for σ^{bm} = {4,6} mm and *P^{beam}* = 4 MW
- T_{core}^{4mm} , T_{core}^{6mm} , T_s^{4mm} , T_s^{6mm} (yellow, purple, blue, brown)
- Temperature exceeds melting point of Al (555 °C)at 4 MW
- not feasible with Aluminium at 4 MW for this h cooling range

Aluminium 1MW

- T_{core}^{4mm} , T_{core}^{6mm} , T_s^{4mm} , T_s^{6mm} (dark blue, green, pink, blue) for $\sigma^{bm} = \{4, 6\}$ and $P^{beam} = 1 \text{ MW}$
- $T_{core} \lesssim 300 \,^{\circ}\text{C} \rightarrow \bar{h} \gtrsim 13,20 \, kW/m^2 K$ ($\sigma = 6,4mm$)
- large core temperature difference between σ = 6, 4mm beam, not for surface temperature

TEMPERATURE VERSUS CONVECTION COEFF H, BE

Beryllium_temperature Pbeam=4MW

Beryllium_temperature Pbeam=1MW

- 500 450 400 õ 350 300 250 200 150 100 5000 10000 15000 20000 25000 h [W/m^2K]
- T_{core}^{4mm} , T_{core}^{6mm} , T_s^{4mm} , T_s^{6mm} (yellow, purple, blue, brown) for $\sigma^{bm} = \{4, 6\}$ and $P^{beam} = 4$ MW
- $T_{core} T_s \simeq 900, 600 \,^{\circ}\text{C}, \, \sigma = 4, 6 \, \text{mm}$
- $T_{core \,\sigma=4} T_{core \,\sigma=6} \simeq 220 290 \,^{\circ}\mathrm{C}$
- high temperature
- Max temperature lower with $\sigma = 6 \text{ mm}$

- T_{core}^{4mm} , T_{core}^{6mm} , T_s^{4mm} , T_s^{6mm} (dark blue, green, pink, blue) for $\sigma^{bm} = \{4, 6\}$ and $P^{beam} = 1 \text{ MW}$
- $T_{core} T_s \simeq 144, 98 \,^{\circ}\text{C}, \, \sigma = 4, 6 \, \text{mm}$

•
$$T_{core \sigma=4} - T_{core \sigma=6} \simeq 55 \,^{\circ}\mathrm{C}$$

• $T_{core} \lesssim 300 \text{ }^{\circ}\mathrm{C} \rightarrow \bar{h} \gtrsim 8,10 kW/m^2 K$ ($\sigma = 6,4mm$)

TARGET AND HORN, POWER DENSITY AND TEMPERATURE DISTRIBUTION

- Study of target cooling for $\{1,4\}$ MW beam and Joule effect
- Aluminium material cannot be used at 4 MW
- Possible for Beryllium (and also AlBeMet, Carbon)
- Seem difficult to use a solid target at 4 MW; need very efficient cooling $\bar{h} \gtrsim 20 kW/(m^2K)$
- Ok at 1 MW with high cooling rate $ar{h} \sim 10 kW/(m^2 K)$