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Abstract: It is very difficult –if not impossible- 
to measure the global (homogenized) properties 
of heterogeneous and anisotropic materials like 
fibre reinforced plastics, composites or sandwich 
structures. When designing composite sandwich 
applications, the elastic properties are required to 
perform structural stiffness and strength 
calculations. However, due to the anisotropic 
nature of composite materials, it is not 
straightforward to measure these properties with 
traditional mechanical characterization. 
In this paper, the Resonalyser method is 
introduced as a material identification technique 
following a reverse engineering scheme. It is a 
non destructive test methodology to measure the 
average elastic properties of anisotropic 
materials. In plane stress conditions, the elastic 
behaviour of an orthotropic material can be 
described by four engineering constants: the 
Young’s moduli E1 and E2, the shear stiffness 
G12 and the contraction coefficient ν12. These in-
plane elastic properties can be determined by a 
dynamic modulus identification technique using 
resonant frequencies. Both the determination of 
the real part (elastic constants) and the imaginary 
part (damping behaviour) are based on the 
measurement of the vibrational response of a 
rectangular test plate, submitted to a controlled 
excitation. 
In the Resonalyser method, the measured 
frequencies are compared with the computed 
resonance frequencies of a numerical parameter 
model of the test plate. The parameters in the 
model are the unknown elastic properties. 
Starting from an initial guess, the parameters of 
the numerical model are tuned until the 
computed resonance frequencies match the 
measured ones. This tuning technique is based 
on the sensitivities of the resonant frequencies 
for parameter changes. The obtained elastic 
material properties are homogenised over the 
plate surface, and hence suitable as averaged 
input values in finite element models to perform 
stiffness and strength calculations.  
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1. Introduction 
 

Engineers are always pushing the envelope 
when trying to design lightweight structures with 
outstanding mechanical performance. Sandwich 
panels with high strength steel skins provide an 
innovative solution for these stringent design 
requirements. Such sandwich structures, 
schematically shown on Figure 1, combine the 
best of both worlds: high strength steel skins 
with a thermoplastic core. They can be used for 
transport applications, in the building industry, 
for storage and packaging, office furniture, 
visual communication boards,... 

 
Figure 1. Elytra sandwich structures with steel skins. 

 
When designing composite sandwich 

applications, the elastic properties are required to 
perform structural stiffness and strength 
calculations. However, due to its honeycomb 
core and layered composition, the material 
properties of sandwich structures are anisotropic 
or direction dependent. It is not straightforward 
(if not impossible) to obtain these properties with 
traditional mechanical characterization. The 
Resonalyser method [01] provides an elegant 
reverse engineering scheme to determine all 
elastic constants with only one non destructive 
test. 
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In this paper, the Resonalyser method is 
introduced as a material identification technique 
following a reverse engineering scheme. The in-
plane elastic properties {E1, E2, G12, ν12} can be 
determined by a dynamic modulus identification 
using resonant frequencies [02]. Both the 
determination of the real part (elastic constants) 
and the imaginary part (damping behaviour) are 
based on the measurement of the vibrational 
response of a rectangular test plate, submitted to 
a controlled excitation. 

 

Experiment Simulation 

 
Figure 2. Dynamic modulus identification. 

 
Like shown on Figure 2, the measured 

frequencies (and associated mode shapes) are 
compared with computed resonant frequencies of 
a numerical parameter model of the test plate. 
Starting from an initial guess, the parameters of 
the numerical model are tuned until the 
computed resonant frequencies match the 
measured ones. The obtained elastic properties 
are homogenised over the plate surface, and 
hence suitable as averaged input values in finite 
element models to perform stiffness and strength 
calculations for orthotropic materials like 
sandwich structures with steel skins. 
 
2. Resonalyser Non Destructive Testing 
 

In plane stress conditions, the constitutive 
law for the elastic behaviour of orthotropic 
materials reduces to  
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where the in-plane elastic properties {E1, E2, G12, 
ν12} can be determined by the Resonalyser 
method, comparing the numerical results from a 
modal analysis with measured resonant 
frequencies. This tuning technique is a Bayesian 
parameter estimation method, based on the 
sensitivities of the resonant frequencies for 
parameter changes.  
 

The inverse procedure of the Resonalyser test 
can only yield good results if the numerical 
model is controllable, and if the elastic properties 
can be observed through the measured data [03]. 
This requires that in the selected series of 
frequencies, at least one of the frequencies varies 
significantly for variations of each of the elastic 
properties. It can be shown [04] that this 
requirement is fulfilled if the aspect ratio a/b 
(length versus width) of the test plate is close to 
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A plate with an aspect ratio satisfying (02) is 

called a ‘Poisson’ test plate, and shows a 
predictable sequence of mode shapes, like shown 
on Figure 2. The first three resonance modes 
correspond to a torsional, an anticlastical 
(saddle) and a synclastical (breathing) mode. 

 
The name ‘Poisson test plate’ has been 

chosen based on the observation that the 
resonance frequencies of the anticlastic and 
synclastic mode shapes are particularly sensitive 
for changes of the Poisson’s ratio of the material. 
A hypothetical material with ν12 = 0 would make 
the frequencies of both modes coincide. A value 
ν12 ≠ 0 gives rise to an increasing eigenvalue 
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for the breathing mode, and a decreasing 
eigenvalue λs for the saddle mode. Using an 
empirical formula [05], it is possible to relate the 
Poisson’s ratio ν12 with the eigenvalues of the 
saddle and the breathing modes: 
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The magnitude of the torsional eigenvalue λt is 
almost exclusively determined by the shear 
modulus G12, and can be expressed as 
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with {a, b, t} the plate dimensions, and M the 
mass of the test plate. 

 
 
3. Vibro-acoustic measurements 
 

A semi-anechoic test lab is installed at 
OCAS for dedicated vibro-acoustic 
measurements. The lab is built as a box within a 
box, and has a total volume of 80 m³. The test 
chamber is acoustically isolated, and insensitive 
to vibration thanks to its well engineered 
mounting system. The concrete walls (with a 
thickness of 380 mm) and the ceiling are lined 
with sound absorbing material, while the floor is 
cladded with reflective planes. This semi-
anechoic test lab allows for a wide range of 
vibrational tests: 

• Order analysis 
• Modal analysis 
• Dynamic analysis 
• Oberst damping test 
• Vibration measuremetns 
• Grindosonic stiffness measurements 

and special acoustic experiments to measure 
sound power, sound mapping and insulation.  
 

The setup for the resonalyser experiments, 
shown in Figure 3, includes a suspension frame 
for the rectangular test plate, an acoustic 
excitation, an accelerometer, a signal 
conditioning unit, a data acquisition system and a 
personal computer. The test plate is suspended 
on the frame with elastic threads, simulating 
completely free boundary conditions.  

 
 

Figure 3. Experimental test facility 
 
The test plate is then excited by an impulse 

with a hammer. The vibration amplitude of the 
plate as a function of time is monitored by the 
accelerometer and captured by the data 
acquisition system.  

The resonance frequencies of the plate in the 
band of interest are detected by taking the Fast 
Fourier Transform (FFT) of the signal. Then a 
sinusoidal signal with a frequency coinciding 
with each resonance frequency is sent to the 
loudspeaker, acoustically exciting the test plate. 
The decay of the signal allows extracting the 
modal damping ratios and the mode shapes 
associated wit the resonance frequencies. 

 

 
Figure 4. Frequency response function + mode shapes  

 
Figure 4 shows a typical Frequency 

Response Function (FRF). Such a signal is a 
frequency domain function expressing the ratio 
between the response signal (output) and the 
reference signal (input). The peaks in the FRF 
indicate that low input levels generate high 
response levels, which reveals resonance 
frequencies. The corresponding mode shapes are 
shown as well.  



For a composite plate with length a = 200 mm, 
width b = 143 mm, thickness t = 3.78 mm and 
total mass M = 0.191 kg, the measured 
eigenfrequencies and corresponding damping 
coefficients are listed in Table 1: 

 
Table 1. Resonalyser plate test results 

 

Mode shape Frequency Damping 

 [Hz] [-] 

Torsion 218.84 0.588 

Saddle 438.43 0.617 

Breathing 496.79 0.280 

 
 

4. Numerical implementation  
 

The Structural Mechanics Module of 
COMSOL Multiphysics is used to calculate the 
mode shapes for the test plate of Table 1 with 
‘dummy’ properties. For these material 
properties, an ‘educated’ initial guess is used, 
e.g. based on micromechanical modelling [06]. 
The measured frequencies of the test plate are 
compared with the computed frequencies to 
identify the in-plane orthotropic properties of the 
material. A detailed flowchart of the Resonalyser 
procedure is given in Figure 5, showing that 
COMSOL Multiphysics and MatLab are closely 
connected in solving this reverse engineering 
problem.  
 
4.1 Finite element model in COMSOL  
 

The Structural Mechanics Module of 
COMSOL Multiphysics is used to calculate the 
mode shapes for a test plate with fixed length a, 
width b, thickness t and mass M. The dynamic 
equilibrium equations of a freely vibrating 
(Love-Kirchoff) plate can be written as an 
algebraic eigenvalue problem: 
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with mass matrix 
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where Aij, Bij, Cij, Eij, Fij, Gij and Hij are constant 
matrices, containing partial derivatives of the 
shape functions used for the Rayleigh-Ritz 
approximation [07] of the vibrational behaviour 
of the plate. The plate rigidities Dij can be 
expressed in terms of the orthotropic engineering 
constants: 
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The solution of (06) yields the eigenvalues λi and 
the corresponding modeshapes {Φ} (i). The 
eigenfrequencies are calculated from and stored 
as ffem = eigfreq_smsld(i). In Figure 2, the 
modeshapes calculated by COMSOL are 
compared with the measurements from the 
modal analysis. 
  
4.2 Optimisation kernel in MatLab  
 

The in-plane elastic constants are stored in a 
parameter column 
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For each iteration, the difference  
 

{ }exp( ) femf p f f∆ = −  (12) 

 
between the measured and the predicted 
eigenfrequencies is calculated. 



 
 

Figure 5. Flowchart of the Resonalyser method when implemented in COMSOL and MatLab 



Updating the vector (11) with the elastic 
constants is performed in the MatLab 
Resonalyser.m script. The optimisation 
algorithm is based on minimizing the cost 
function [08] 
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in which C(p) is a NP
� � �  cost function 

yielding a scalar value, NP = 4 is the number of 
material parameters in (11), and {p(0)} is an 
(NPx1) vector that contains the initial guesses. 
The measured frequencies {fexp} and the 
computed frequencies {ffem} both have 
dimensions NFx1, with NF = 3 the number of 
frequencies studied. The choice and role of the 
weighting matrices [W(f)] and [W(p)] are 
discussed in [09]. 
 

The cost function C(p) has a minimum value 
for the optimum parameter set {p(opt)}. Updating 
for the {p} vector in iteration step (j+1) can be 
expressed by a recurrence formula 
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where S is the sensitivity matrix containing the 
partial derivatives of the numerical frequencies 
with respect to the elements of the parameter 
column. This iteration procedure ends when 
convergence of {p} is reached, i.e. when 
 

( )C p δ<  (15) 
 
with δ a predescribed tolerance, or when the 
maximum number of iterations j = N is reached. 
The values {p(opt)} of the engineering constants 
in the last iteration cycle provide a good 
approximation of the averaged mechanical 
properties of the full test plate. 
 

 
Figure 6. Iteration history for in-plane properties 

 
The iteration history for the in-plane properties 
of the test plate under study is shown on Fig. 6. 
For E2 and G12, the optimum solution is found 
after 60 evaluations of the cost function C(p). 
After 140 iterations, the convergence criterion 
(15) is met for all elastic properties. These final 
results are listed in Table 2: 

 
Table 2. Resonalyser plate simulation results 

 

 Initial Optimum 

E1 [MPa] 45 800 41 958 

E2 [MPa] 15 500 9 810 

ν12 [-]  0.35 0.365 

G12 [MPa] 5 000 4 287 

 
This section clearly shows that the smooth 
interface between COMSOL and MatLab allows 
identifying the material properties of complex 
composites by means of reverse engineering 
schemes. COMSOL Multiphysics provides both 
the capability to calculate the modeshapes of 
orthotropic plates, and to interact with the 
MatLab optimisation kernel.  
 
The screenshot on Figure 7 proves the close 
interaction between these software packages, 
bringing out the best of both worlds.  
 



 
 

Figure 7. Close interaction COMSOL - MatLab 
 
5. Experimental validation 
 

The Resonalyser method yields averaged 
properties that describe the mechanical 
behaviour of composite structures. In order to 
validate the results listed in Table 2, traditional 
mechanical tests were performed. Quasi-static 
tensile tests were conducted to determine the 
Young’s moduli E1 and E2 and the corresponding 
strength values XT and YT. Using two strain 
gauges, the in-plane contraction coefficient ν12 
can be derived from these experiments as well. 
The shear modulus G12 and strength S were 
derived from rail shear tests. The results of the 
mechanical characterization are summarized in 
Table 3 and compared with the Resonalyser (non 
destructive) test results: 

 
Table 3. Experimental validation 

 

 Mechanical Resonalyser 

E1 [MPa] 36 400 41 958 

E2 [MPa] 8 500 9 810 

ν12 [-]  0.32 0.365 

G12 [MPa] 3 190 4 287 

XT [MPa] 700  

YT [MPa] 7.2  

S [MPa[ 28.2  

 
Table 3 indicates that the Resonalyser test 
method tends to overestimate the values 
measured in the experiments.  

Indeed, the Resonalyser method will typically 
give higher stiffness values because 
• It is a non destructive (NDT) method. 

When performing traditional mechanical 
testing, sample preparation can already 
induce microscopic damage, lading to a 
lower stiffness and strength. Moreover, the 
effects of slip are avoided when performing 
NDT, again resulting in higher (and more 
accurate) estimates for the elastic constants.  

• It measures the global (homogenized) 
properties of a composite structure, rather 
than the local stiffness of a small specimen, 
which can exhibit quite some scatter. 

To prove this point, the Resonalyser procedure 
was performed with the experimental results as 
initial values. Table 4 indeed reveals that the 
Resonalyser procedure will provide higher 
values for the elastic constants: 
 
Table 4. Resonalyser with experiment as initial value 

 

 Experiment Optimum 

E1 [MPa] 36 400 39 254 

E2 [MPa] 8 500 10 541 

ν12 [-]  0.31 0.332 

G12 [MPa] 3 335 4 297 

 
The COMSOL implementation of the 
Resonalyser procedure (“OCAS”) was compared 
with published experimental and numerical 
results (“SOL”, cfr. [10]). The results of this 
benchmark, shown on Figure 8, again confirm 
that the Resonalyser method will overestimate 
the experimental values. In addition, the OCAS 
procedure is seen to perform more accurately 
than the algorithm proposed in [10]. 

 
Figure 8. Benchmarking the Resonalyser procedure 

 



6. Conclusions 
 

In this paper, the Resonalyser method was 
introduced as a material identification technique 
following a reverse engineering scheme. It is a 
non destructive test methodology to measure the 
average elastic properties of orthotropic 
materials. The in-plane elastic properties {E1, E2, 
ν12, G12} were determined by a dynamic modulus 
identification using resonant frequencies. Both 
the determination of the real part (elastic 
constants) and the imaginary part (damping 
behaviour) are based on the measurement of the 
vibrational response of a rectangular test plate, 
submitted to a controlled excitation. COMSOL 
Multiphysics is instrumental in the proposed 
reverse engineering scheme, as it provides both 
the calculation of mode shapes and the 
interfacing with the optimisation kernel of 
MatLab. 
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