Advanced Loudspeaker Calculator – an Example of COMSOL Apps Utilization F. Malbos¹, M. K. Bogdanski², M. Strauss³ 1. Harman France, VPDT, 12 bis, rue des Colonnes du Trône, Paris, 75012, France 2. Harman Becker Automotive Systems, VPDT, 135 Schlesische Straße, Straubing, D94315, Germany

INTRODUCTION: Developing a new loudspeaker design requires not only knowledge and experience in the field, but also an access to verified and efficient tools. Engineers at HARMAN have developed a COMSOL[®] Application to serve at the early stages of the design process. The Application has been created in a close collaboration with the end users, i.e. transducer engineers.

i	0048	× Close

LPM/THD Spea Simulator	aker
Session time:	1min 24s
Connected in:	Browser
ldle time:	47s
Process CPU:	0%
Start time:	2018-09-18 06:28:20

Figure 1. LPM/THD Application

COMPUTATIONAL METHOD: Simulations are based on a linear Lumped Parameter Model^[1] (LPM) and a non linear LPM where the speaker is described with a set of electromagnetic and mechanical parameters^[2]. The linear LPM allows to simulate speakers in free field, closed and vented enclosures. The user can predict the Total Harmonic Distortion (THD) and the membrane DC-Shift. Linear LPM is solved with COMSOL[®] Analytic Functions. Non linear

Figure 6. SPL simulation

Figure 7. Impedance simulation

Non linear simulation results were compared with measurement data delivered by a professional loudspeaker measurement^[3].

simulations are performed with Infinite Impulse Response filters in MATLAB[®].

The user can generate a fully automatic and standardized report where all speaker parameters and simulation results are saved. The goal is to instantaneously build a simulation report which is used in any customer meetings or shared amongst HARMAN R&D centers worldwide.

CONCLUSION: the LPM/THD Apps is a very fast and accurate tool to predict the performances of subwoofers, woofers and midranges. Application is currently on a COMSOL[®] Application Server and is accessible globally to all transducer engineers at HARMAN.

Figure 4. Non Linear LPM parameters (Suspension) **Figure 5**. Non Linear LPM parameters (Motor)

REFERENCES:

- J. Vanderkooy, P.M.Boers, M.Aarts, "Direct-Radiator Loudspeaker System with High BI", Paper presented at AES 114th Convention, 22-25 March 2003, Amsterdam, Netherlands
 W. Klippel, Prediction of Speaker Performance at High Amplitudes, 111th AES Convention (2001)
- 3. W. Klippel, Measurement of large parameters of electrodynamic speaker, 107th AES Convention (1999)

Excerpt from the Proceedings of the 2018 COMSOL Conference in Lausanne