

Mathematical Modeling of Drug Transport in Brain Tumor

Yutong Guo¹, Miguel O. Bernabeu², Costas D. Arvanitis^{1,3}

¹School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA ²Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom ³Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

MOTIVATION

- Focused ultrasound (FUS), when combined with circulating microbubbles, provides a noninvasive method to locally and transiently disrupt the Blood Brain Barrier (BBB). [1]
- Preclinical research have shown that FUS-BBB disruption can lead to an seven-fold increase in the delivery of anticancer agents(doxorubicin) in brain tumors.^[2]
- However, there is a lack of fundamental understanding of how physicochemical drug properties influence the effects of FUS-mediated BBB disruption on drug transport and cellular uptake in the highly heterogeneous tumor microenvironment.

Anticancer agent/cancer cells (GFP)

MATHEMATICAL MODEL

- We developed a mathematical model using COMSOL Multiphysics to simulate:
 - ➤ Blood and interstitial fluid flow
 - ➤ Transport of anticancer agents through the bloodstream and across the endothelium into the interstitial space of a tumor
 - ➤ Drug uptake by tumor cells and drug binding to cell nucleus.

MATHEMATICAL MODEL

$$\mathbf{n} \cdot \nabla c_e = 0$$

GEOMETRY

Properties of brain tumor vasculature:

- Disorganized
- Unevenly distributed.

Vasculature Comsol LiveLink™ 50µm for MATLAB® Average vessel diameter 15µm 80µm

(percolation model)

Matlab

Lagerweij, Tonny, et al. **Angiogenesis** 20.4 (2017): 533-546.

MESH

- Computational domain is discretized using triangular elements
- Average mesh edge length: 3μm
- Mesh is refined around the vascular wall (average mesh edge length 0.8µm along the vascular wall)

Geometry

Mesh

PARAMETER FIT

To obtain the drug transport parameters: Single vessel geometry is used to fit model prediction to the experimentally determined interstitial drug pharmacokinetics using a numerical optimization procedure

DRUG DISTRIBUTION

SENSITIVITY ANALYSIS

To study the relative importance of the different transport parameters, we conduct sensitivity analysis using parametric sweep.

- Vary parameter value (P_i) by $\pm 25\%$
- Sensitivity = $\frac{\Delta c}{\Delta P_i}$, c = drug concentration

CONCLUSION

- FUS increases BBB permeability and induces convective transport, leading to significant increase in drug penetration.
- Sensitivity analysis shows that FUS is able to overcome one of the major obstacles to the transport of relatively small therapeutics in brain tumors.
- Mathematical modeling allow us to further refine therapeutic interventions and identify FUS-nanomedicine combinations for optimal intratumoral penetration and uptake.
- This work forms the basis for the rational design of the anticipated clinical trials (Phase III) of FUS-mediated BBB disruption technology in primary brain tumors

Thank you!