

Monotonic and Cyclic Behavior of Trabecular Bone Under Uniaxial and Multiaxial Loading

By

Ardiyansyah Syahrom

Mohd Al - Fatihhi Mohd Szali Januddi

Rabiatul Adibah Abdul Rahim

Director Sports Innovation and Technology Centre Institute of Human Centred Engineering Universiti Teknologi Malaysia 2017

OUTLINE

Introduction

- Problem Statement
- Objectives

Methodology

- Sample Preparation
- Experimental Setup
- Computer Simulation

Results & Discussion

- Mechanical Behaviour of Bovine Trabecular Bone
- Fatigue Behaviour of Bovine Trabecular Bone
- Computational Analyses
- Conclusion

INTRODUCTION

BACKGROUND

- Bone: The skeletal system
 - Cortical bone

Trabecular bone

- Bone mechanics
 - Mechanical properties
 - Fatigue properties
 - Multiaxial Behaviour of Trabecular Bone
 - Failure criterion

PROBLEM STATEMENT

- Bone fatigue fracture
- Multiaxial stresses and strains in vivo
- Osteoporosis
- Research questions

- How do the **orientation** affect the trabecular behaviour under multiaxial fatigue loading?
- What is the **influence of torsional loading** on the behavior of trabecular bone under compressive fatigue and monotonic loading?

OBJECTIVES

- To simulate compressive fatigue life and investigate the effect of sample orientation.
- To evaluate the torsional loading effects onto the fatigue compressive behavior of bovine trabecular bone

METHODOLOGY

RESEARCH DESIGN

innovative ${\scriptstyle \bullet }$ entrepreneurial ${\scriptstyle \bullet }$ global

SAMPLE PREPARATION

2

EXPERIMENTAL SETUP

COMPUTER SIMULATION

(a)

MIMICS software

(a)

(b)

COMPUTER SIMULATION

Figure: Models preparation and orientation

Figure: Boundary condition

BOUNDARY CONDITIONS

- $F_x = -1E6 (-0.3434t^7 + 1.1756t^6 1.5667t^5 + 1.0239t^4 0.3369t^3 + 0.0490t^2 0.0013t + 0.0002)$
- $F_y = -1E5 (-1.1068t^7 + 3.8818t^6 4.8999t^5 + 2.4244t^4 0.0797t^3 0.2734t^2 + 0.0542t 0.0010)$
- $F_z = -1E5 (-2.9006t^7 + 7.0557t^6 3.5732t^5 3.5934t^4 + 4.4087t^3 1.6199t^2 + 0.2244t + 0.0048)$ innovative entrepreneurial global

COMPUTER SIMULATION

Table: Parameters used in fatigue modelling of trabecular bone

Property	Parameter	Value	Property group
Fatigue strength coefficient	σ _f ,	26.4MPa	Basquin
Fatigue strength exponent	В	-0.155	Basquin
Fatigue ductility coefficient	εf′	0.0134	Coffin-Manson
Fatigue ductility exponent	С	-0.097	Coffin-Manson
Q	critical plane evaluation	3	NA
Initial yield stress	σ _{vs0}	50.4 [MPa]	NA
Kinematic tangent modulus	E _{Tkin}	0.05E ₀	NA

RESULTS AND DISCUSSIONS

FATIGUE BEHAVIOUR OF BOVINE TRABECULAR BONE COMPUTATIONAL ANALYSES

FATIGUE BEHAVIOUR OF BOVINE

Table: Summary of the lifetime curve obtain indifferent stress states.

Stress state	Lifetime curve	R ²
С	$\sigma_{\rm norm} = 1.1602 - 0.067 \log(N_{\rm f})$	0.86
CD	$\sigma_{norm} = 1.1386 - 0.074 \log(N_{f})$	0.75
СТ	$\sigma_{norm} = 1.1033 - 0.086 \log(N_{f})$	0.68
TD	$\sigma_{norm} = 1.1070 - 0.090 \log(N_{f})$	0.72
Т	$\sigma_{norm} = 1.0579 - 0.072 \log(N_{f})$	0.82

$$(\sigma/\sigma_y)^2 + (\tau/\tau_y)^2 = 1$$

where

 $\sigma_y = apparent compressive yield stress$ $<math>\tau_y = apparent shear yield stress$

$$\left(\frac{\sigma_a}{E_0(N_f)}\right)^2 + \left(\frac{\tau_a}{G_0(N_f)}\right)^2 = 1$$

Where,

- σ_a = maximum cyclic compressive stress
- τ_a = maximum cyclic shear stress
- E_0 & G_0 are initial modulus and modulus of rigidity respectively.

Figure: Monotonic compressive and combined fatigue compressive-shear strength.

innovative ${\scriptstyle \bullet}$ entrepreneurial ${\scriptstyle \bullet}$ global

FATIGUE BEHAVIOUR OF BOVINE **TRABECULAR BONE**

(a)

Figure: SEM micrograph of trabecular sample subjected to combined compression-torsion loading. (a) Fracture line of the sample (at 100µm), (b) fracture surface of the sample (at 1mm), (c) icicle-like fracture of a trabeculae with stump structure left (at 10µm), and (d) delaminating effect on sample surface (at 100µm).

Figure: Convergence study for the finite element analysis

Figure: Comparison between FE simulation and experimental modulus with periodic boundary condition.

Figure: Comparison of (a) uniaxial and (b) multiaxial life prediction of the models at different trabecular orientation.

Figure: Comparison of finite element prediction with experimental data from literature showing the relationship of applied strain on the cycles to failure.

Figure: Predicted normalized modulus with increment of applied stress corresponding to the number of cycles to failure.

Figure: Contour of effective plastic strain predicted by FE simulations under uniaxial and multiaxial loading (final fatigue loading cycles taken from gait loading).

CONCLUSION

CONCLUSION

- The mechanical properties of bovine trabecular bone were observed to be deteriorated by the superpositioned torsional loading. In monotonic test, multiaxial compressive-torsional loading has been found to induce brittle fracture and reduce the strength of the sample by 27%.
- Fatigue life reduction was significant when the shear stress is about 24% greater than maximum compression stress. In other words, even at compression-torsion stress ratio of 4:1, the shear stress manifest itself to dominantly affect the fatigue life of the trabecular bone.

THANK YOU