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Abstract: Radionuclide transport modeling
is a part of the research concerning geological
disposal of spent nuclear fuel. Typically, the
transport models near a single deposition hole
focus on the reactions of nuclides, while the
model geometry and the flow of groundwater
are often simplified. In this paper, instead,
a radionuclide transport model in a detailed
3D geometry with no reactions is introduced.
The aim is to study the effects of the geom-
etry and realistic flow fields on the nuclide
transport. The groundwater flow is modeled
with the continuity equation and Darcy’s law,
whereas the mass transport problem of a nu-
clide reduces to a general convection-diffusion
problem. This paper focuses on development
of the model instead of the final results.
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1 Introduction

The Finnish diposal plan for spent nuclear fuel
is, in brief, to seal the used fuel rods into
copper-covered iron canisters, surround the
canisters with bentonite (a montmorillonite
clay), and place the whole packages appoxi-
mately half a kilometer deep into the bedrock.
In this study, I follow a disposal concept where
vertical holes are drilled in excavated, horizon-
tal tunnels (figure 1).

Excavation of the tunnels damages the sur-
rounding bedrock forming a so-called excava-

tion damaged zone (EDZ). In the model, it
is assumed to consist of rock with very thin
water-conducting fractures, which make the
EDZ a porous medium. The slow flow of water
in EDZ is assumed to obey Darcy’s law. Be-
sides these induced flow paths, the bedrock in-
cludes natural fractures. These are described
with three thin (aperture<1 mm), plain wa-
ter conducting zones. In reality, the fractures
are not necessarily smooth, straight, nor com-
pletely free of small pieces of the rock. In
addition, the flow of water is slow. Thus,
the momentum transport of water also in the
fractures is described with Darcy’s law is-
tead of Brinkman or Navier-Stokes equations.
Another water conducting part in the model
is the backfilled disposal tunnel. The back-
fill material, however, conducts water more
poorly than the EDZ or the natural frac-
tures. The bentonite is assumed to not con-
duct water.Thus, radionuclides are assumed to
be transported by diffusion in the bentonite
and by diffusion and advection in the water-
conducting part. In the model, radionuclides
are released inside the canister and trans-
ported by diffusion through a small defect (5
cm deep copper-penetrating hole with 0.5 mm
radius) to bentonite. The interior of the can-
ister is not interesting in this study, hence
the interior volume is assumed to be perfectly
mixed and it is described with an equation
on the defect boundary. In this way com-
putational resources are saved, and possible
problems caused by the tricky, small hole are
avoided.
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Figure 1: Geometry of the model. Computational work is reduced by halving the geometry along a
symmetry plane. The scale of the axis is meters. The top part of the deposition hole is light blue since it is
of the same material as the tunnel backfill. The defect in the canister is so small that it is hard to see in

the figure. The defect is placed on the symmetry plane near the right edge of the canister.

2 Governing Equations

Darcy’s law is

U = −κ
µ

(∇p− ρg),

where U is the Darcy velocity, κ the perme-
ability tensor, µ the viscosity of water, p the
pressure, ρ the density of water, and g the
gravitational acceleration. Porous media flow
obeys this law when the flow velocity and the
shearing forces of the fluid are low. Combin-
ing the law with the time-independent conti-
nuity equation for an incompressible fluid in a
porous medium, we have an equation for the
flow of water. The water flow problem is to

find the pressure p = p(x) such that



∇ · [−κ
µ

(∇p− ρg)] = 0 in Ωflow

p = pin on ∂Ωinlet

p = pout on ∂Ωoutlet

n ·
(
−κ
µ
∇p
)

= 0 elsewhere on ∂Ω.

In the study, the water-conducting zones are
assumed isotropic. Thus, the permeability
tensor can be substituted with a scalar.

Having the pressure, the Darcy velocity
U can be computed from Darcy’s law. It is
needed in the mass transport problem, which
reads: find the radionuclide concentration c =



c(x, t) such that

θ
∂c

∂t
+∇ · (−De∇c) +U · ∇c = 0

in Ωflow

θ
∂c

∂t
+∇ · (−De∇c) = 0

in Ωbentonite

− n · (−De∇c) =
De

l
(cc − c)

on ∂Ωdefect

n · (−De∇c) = 0 on ∂Ωoutlet

n · (−De∇c+ cu) = 0 on ∂Ωelsewhere

c (x, 0) = 0 in Ω,

where θ is the porosity, De the effective dif-
fusivity, u the Darcy velocity, n the surface
normal vector, l the defect depth, and cc the
canister interior concentration. cc is solved
simultaneously with the above equation from
the following initial value problem:

θ
∂cc
∂t

= −DeA

V l
(cc − c)

cc (0) = cc,0

θ
∂cc
∂t

(0) = −DeA

V l
(cc(0)− c(x, 0)) ,

where x ∈ ∂Ωdefect, A is the defect cross-
section area, V the canister interior volume,
cc,0 the canister interior initial concentration,
and ∂c/∂t(0) is the initial condition for the
interior concentration time derivative. This
initial value problem is a model of a perfectly
mixed volume, from which a solute is trans-
ported by diffusion via a small hole defined by
the parameters above.

3 Methods

The used elements are various orders of La-
grange elements and third order Hermite ele-
ments [1][2]. The numerical stabilization tests
have been done with second order Lagrange
elements, whereas the comparison of elements
includes second and third order Lagrange ele-
ments and third order Hermite elements.

Linear equation systems are solved with
direct solvers, mainly with Umfpack solver
but Pardiso solver is also used in some occa-
sions. The time-dependent differential alge-
braic equation (DAE) system (or ODY system,
if no Dirichlet boundaries exist) produced by

the finite element discretization is solved with
the Backward Differentiation Formula (BDF)
solver. In most test cases, the maximum BDF
order is five, but in some cases the maxi-
mum order is restricted to two, which makes
the method A-stable for linear systems. The
Generalized-α method may have some benefi-
cial oscillation damping properties, but it has
not been tested yet.

3.1 Numerical stabilization

The convection-diffusion problem for the mass
transport needs stabilization to damp the
observed spurious oscillations, which derive
from the geometric scale differencies and from
the parameter differencies between the ma-
terials. These scale and material differ-
encies cause steep concentration gradients,
which again are numerically problematic and
cause oscillations. In the study, the Stream-
line Upwind/Petrov-Galerkin (SUPG) stabi-
lization is used with different stabilization pa-
rameters to damp these oscillations. Also,
shock-capturing technique [4] is tried to damp
the oscillations in the cross-wind directions.

A general convection-diffusion problem
reads: find u = u(x, t) such that

u̇+ β · ∇u− ε∆u = f in Ω
u(x, t) = ub(t) on ΓD

ε∇u · n = g on ΓN .

In the model, u̇ = ∂c/∂t, u = c, β = U/θ,
ε = De/θ, and f = 0. With residual

R = u̇h + β · ∇uh − ε∆uh − f

a consistently stabilized finite element formu-
lation of the problem is: find uh = uh(x, t) ∈
Uh = {uh|uh ∈ Pn and uh = ub on ΓD} such
that

B(uh, v) +
∑
K

∫
K

Rτs P dx = l(v) ∀v ∈ Vh

where

B(u, v) =
∫

Ω

u̇ v dx+
∫

Ω

(β · ∇u) v dx

+
∫

Ω

ε∇u · ∇v dx,

l(v) =
∫

Ω

f v dx+
∫

ΓN

gv ds,

Uh and Vh = {v|v ∈ Pn and v = 0 on ΓD} are
the finite element spaces, K an element, τs



the stabilization paremeter, and P the stabi-
lization test function. In the SUPG stabiliza-
tion P = β · ∇v. In most computations, the
used stabilization paremeter is constant. The
problem with such stabilization is that in some
parts of the model the stabilization might not
be strong enough and in other parts it may be
excessive decreasing accurary. Thus, a stabi-
lization parameter suggested in [3] would be
preferable:

τs =
h

2|β|p
ξ(P p

e ),

ξ(P p
e ) = max{0, 1− 1/P p

e } and

P p
e =

|β|h
2εp

.

Here h is the element size, P p
e the local, ap-

proximation degree dependent Peclet number,
and p the approximation degree, that is, the
element order. This τs should provide rea-
sonable amount of stabilization in all model
regions, but the use of it has still been un-
succesful due to some convergence difficulties.
One possibility to solve these problems is to
limit this stabilization parameter from above
to avoid very large parameter values. This can
be done with

τs,L = min{L, τs}

where L is the limit. The results of this ap-
proach are not yet ready.

Whereas the SUPG stabilization works in
the streamline direction, the shock-capturing
technique stabilizes the solution in the cross-
wind direction. It is needed when the changes
in concentration are steep not only in the gra-
dient direction but also in other directions. An
important feature of such stabilization is that
the consistent version makes the problem non-
linear even if the initial problem is linear. The
technique has been tested with constant tun-
ing parameter. The benefits seems to be litte
in comparison to the increase in computation
time. More sophisticated shock-capturing sta-
bilization parameter choices can be found in
literature, e.g. [4] or [3], but they have not
been used.

3.2 Weak Form of Boundary Problem

The boundary equation describing the canis-
ter interior has to be formulated in weak form

for COMSOL. The weak form is: find cc on
the defect boundary such that∫

∂Ωdefect

θċc cc,test dx

+
∫

∂Ωdefect

−DeA

V l
(cc − c) cc,test dx = 0

and cc satisfies the initial and boundary con-
ditions. The left-hand side integrand is the
dweak term in COMSOL and the right-hand
side integrand the weak term.

4 Use of COMSOL Multiphysics

The Chemical Engineering Module is used for
both the water flow and the mass transport
problems. Stabilization techniques are in-
cluded in the module, thus it is the obvious
choice for the mass transport problem. The
porous media equations have to be systemat-
ically modified to fit into the module. The
module also includes a momentum transport
option based on Darcy’s law, hence the wa-
ter flow problem can be easily solved with the
same module.

The equation on the defect surface is solved
with Boundary Weak Form application mode
in PDE Modes in COMSOL Multiphysics
main package. The equation solved has to be
written in the weak form, but that is straight-
forward as seen in the section above.

The model has been scripted in Matlab
with the help of the graphical user interface.
Firstly, a script that initializes the model ge-
ometry was written. Then the model geome-
try was opened with the COMSOL graphical
user interface (GUI), with which the physics
were defined. The automatically produced m-
file was saved. The mesh was created again
by scripting, whereas the solution algorithms
were set with the GUI. The long m-file ob-
tained was divided into convenient parts and
a master m-file was written. The scripting pro-
cedure requires some work, but the result is a
set of m-files, which can be used to vary the
model parameters easily.

The main benefits of the Matlab scripting
are the automated mesh generation, the ability
to change the geometry in a flexible manner,
and the overall sequencing capabilities. In the
model, prism mesh elements are used in the
fractures, hence the mesh has to be created in
a strict order. The scripted mesh generation



helps substantially, if the mesh density has to
be changed in any way. The changes in ge-
ometry are usually laborious, but they can be
done quickly with scripted geometry genera-
tion described above. The sequencing capa-
bility is valuable when a reasonable combina-
tion of mesh, element, and solver paremeters
is sought. Also, a scripted model-initializing
sequence is useful, if the modeled problem has
to be solved with varying physical paremeters
or with different boundary conditions.

5 Experimental Results

An example of the results is shown in figure 2.
The flowing water transports the radionuclide
out from the model before the nuclide has time
to diffuse far in the flowing parts of the model.

Negative concentrations in some regions of
the model often indicate problems in the nu-
merical solution. Thus, the negative concen-
tration is used to demonstrate the effects of
different stabilization techniques on the solu-
tion in the following figures 3–5. The solution
with no stabilization oscillates visibly. SUPG
stabilization damps the most of the oscillation,
but shock-capturing technique seem to have
little effect on the remaining oscillations. Sur-
prisingly, the SUPG stabilization also reduces
the computation time compared to the solu-
tion with no stabilization.

Figure 2: An example of the concentration profile
at 2.4·105 years. The scale is from 1·10−8 (blue)

to 2·10−5 (red) grams per liter. The SUPG
stabilization was used with constant tuning

parameter.

The stabilization seems to help the time-
dependent solver to take larger time-steps
than without the stabilization. The SUPG
with the shock-capturing technique requires
somewhat more computation time than only
SUPG (95 min versus 65 min), but the solu-
tion changes only a little.

Figure 3: The regions with negative
concentration in the solution with no

stabilization at 2.4·105 years. The computation
time was 73 minutes.

Figure 4: The egions with negative concentration
in the solution with SUPG stabilization at

2.4·105 years. The stabilization paremeter is
constant. The computation time was 65 minutes.



Figure 5: The regions with negative
concentration in the solution with SUPG and
shock-capturing stabilization at 2.4·105 years.

The stabilization paremeters are constants. The
computation time was 95 minutes.

A problem with finite element methods is that
they do not necessary preserve mass locally.
The Hermite element has the gradients at the
mesh element nodes as degrees of freedom.
Thus, they could be thought to have better
local mass balance properties.

Figure 6: A comparison of the elements. The
total mass in the interior of the canister and in

the bentonite as a function of the time. The
figure is from a test case where there is only one
fracture and no tunnel section in the model. The
blue line is the result with third order Hermite
elements and the red slashed line is the result

with second order Lagrange elements.

The minimum order of the Hermite element is,
however, three making the computation time
long if dense mesh is used. In addition, high
order elements might not be an ideal choice
for a model with steep gradients because of
their tendency to make the solution oscillate.
If time behaviour of the total mass in the ben-
tonite and inside the canister is studied, local
mass balance is not critical since the region
of interest is quite large. Of course, the solu-
tion has to be otherwise reasonable. Figure 6
shows that the element choice affects the solu-
tion slightly.

6 Discussion

COMSOL Multiphysics is a flexible tool when
studying non-reactive transport of one ra-
dionuclide in the spent nuclear fuel final de-
position environmnent. The realistic geome-
try generation possibilities and the control of
the solution procedure are valuable properties.
The number of the nuclides could be easily in-
creased, radioactive decays added within cer-
tain limits, and sorption according to the lin-
ear sorption law used. The limiting factor is
the computation resources. Also mechanical
dispersion could be easily used if wanted. It,
in fact, stabilizes the problem a bit.

Problems arise when the solubilities of the
nuclides are limited. This is especially prob-
lematic when multiple nuclides of the same
element share the solubility. The solubil-
ity handling could be built into COMSOL,
but it would require a significant amount of
studying and testing to make it work prop-
erly. It seems that, other application specific
software are needed for models including the
above chemical phenomenon. On the contrary,
COMSOL often handles transport phenomena
better than the specific software.

A good feature of COMSOL is its applica-
bility to numerous problems. The techniques
used in the study in this paper can be extended
to other problems of similar type, like in [5].
The techniques, however, may need some mod-
ifications.

7 Conclusions

Non-reactive radionuclide transport problems
in realistic geometry can be solved effectively
with COMSOL Multiphysics. If, however,



some special chemical phenomena are consid-
ered, application specific software is needed.
The techniques used in the model in this pa-
per are applicable to other problems of similar
type.
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