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Abstract: A simplified system for high
voltage test is studied, with the am of un-
derstanding the reasons for failures of volt-
age holding which are not covered by con-
ventional and local design criteria. A first
understanding of the problem is obtained by
solving the electrostatic potential in a 2D
axisymmetric geometry with Comsol Multi-
physics; the detail of the electrode shapes
is taken into account and a cascade of par-
ticles between opposite electrodes is gener-
ated: the impact of an ion (say a H+) with
an electrode extracts particles of the oppo-
site charge (say electrons, H−) which are in
turn accelerated in the opposite direction.
Electrons are treated relativistically. Very
specific attractors were found for the impact
points; physical reason is that the highly non
uniform electric field may focus, defocus or
move the discharge. A second analysis takes
into account the spread of the reemitted par-
ticle velocity and a consequent 3D motion.
Solution of a Fokker Planck style equation
for the impact point confirms the existence
of hot spots. Plans to include perturbations
to azimuthal geometry are noted.
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1 Introduction

In a high voltage accelerator system, we
study the effect of a cascade of particle emis-
sion between opposite electrodes (named
also pingpong for obvious analogy), which
is probable in some surface conditions; with
a simple postprocessor application, we show
that the cascade moves spatially and tends
to converge at some particular electrode po-
sitions, which are named attractors. In
2D, the attractor position does match the
observed damage on some real electrodes
(seemingly not the weakest point on the elec-

trode). So that a prediction of failures and
remedies seems here possible and motivate
further study and prelimary work on exten-
sion to 3D model and on statistical models,
here also presented.

The holding of high voltages > 100 kV
(HV) has a reputation for being a subject
of difficult predictability and repeatability.
Phenomena of microdischarges between the
electrodes of high voltage accelerating tubes
are common, but their physical aspects are
not yet fully understood [1, 2, 3]. Part of the
subject complexity is due to the fact that
the large variety of accelerator applications
leads to different electrode conditions, and
the accelerator itself is made from several
parts, so that different systems are actually
covered; another reason is due to uncertaini-
ties of surface preparation. Other phenom-
ena are more clearly related to multiphysics
modelling, as the fact that a current leakage
may heat an electrode (which is a positive
feedback, leading to a spark) or may clean
the electrode, which reduces emission and is
a negative feedback, leading to a short tran-
sient discharge (named spike).

Even if HV systems are designed not to
exceed by a good safety margin a given sur-
face field over which field emission is possi-
ble, there are at least three known mech-
anisms for the onset of discharge in vac-
uum, discussed in the literature[2] and rel-
evant here: 1) isolator surface discharge; for
example when an electron strikes an insula-
tor, it may produce on average δ secondary
electrons; when δ > 1, the insulator surface
charges up and design fields are altered lo-
cally, with possible discharge (also in rela-
tion to adsorbed gas or imperfection in the
isolator or in its junction to the electrode);
remedy mainly consists in modifying the de-
sign, to obtain a lower field near the junc-
tion; 2) microparticle emission; let V1 be the
anode to catode voltage and d their distance;
if a microparticle detaches from the anode,
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it will get a positive charge (∝ V1/d) by in-
duction and will impinge on the catode with
an energy (∝ V 2

1 /d), which may be sufficient
to locally melt the electrode and to trigger a
discharge; otherwise the microparticle may
bounce, getting a negative charge by induc-
tion (and repeat the process); by postulat-
ing microparticle emission, Cranberg[3] was
able to predict a V1 ∝

√
d trend; 3) mi-

crodischarge by regenerative ion emission,
which will be here studied in detail; an H+

ion emitted from the anode impinges on the
catode, extracting negative particles, includ-
ing an average number µ− of H− from hydro-
gen or pump oil absorbed on the catode); in
turn each H− accelerated against the anode
extracts an average number µ+ of H+ ions.
According to Ref. [1], when µ = µ−µ+ > 1
current rises until absorbed contaminants
decrease, so that µ become less than 1 and
discharge decreases; further studies assum-
ing parallel electrodes and an emitted parti-
cle velocity distribution[4] conclude that the
discharge spreads over these electrodes and
thus weakens.

Fig. 1 show a test geometry for high volt-
age devices (about 1 MV) in the style of a
Cockroft-Walton accelerator. One electrode
protrudes towards the other, so to obtain a
higher acceleration field. This design incor-
porates and exemplifies several good design
practices: 1) the point of maximum electric
stress is rounded; 2) the necessary support
of the catode is made from several insula-
tors, separated by large metal electrodes, so
that the voltage step per insulator is reduced
(200 kV) and insulators are protected from
particle and X-ray impact; 3) the distances
between the anode and these intermediate
electrodes increase with the voltage differ-
ence between them.

A similar geometry was also used in some
voltage tests of ion sources, considered for
Neutral Beam Injectors (NBI) in fusion de-
vices, in the 800 kV to 1 MV range [5, 6, 8],
with even better insulator design and pro-
tection; anode also contain a drift tube (not
shown in fig 1) to transport the beam pro-
duced from the ion source (also not shown
in fig 1). In some experimental conditions, a
fairly large pressure of H2 gas [ 10−3 Pa or
more] was required; holding the 800 kV volt-
age proved difficult, and after experiment
some burning was apparent on the anode, at
about four azimuthal positions[6], approxi-

mately at the same r, z marked in fig 1.
In section II, after introducing the elec-

trostatic model and the ray tracing equation,
simulation results from Comsol Multiphysics
(CM) will prove in a straighforward manner
that a microdischarge does compress near
the attractor, giving the so-called hot spots
on the electrodes. In the voltage range con-
sidered, electrons are strongly subjected to
relativistic effects, so the implemented equa-
tions are fully relativistic. In section III,
we briefly recall a full 3D statistical the-
ory, which very approximately gives a Fokker
Planck equation for the anode emitted cur-
rent, where µ is an eigenvalue and coeffi-
cients have to be computed from extensive
ray tracing from section II. Straighforward
solution with Comsol Multiphysics indicate
that the hot spot does not spread out. In
section IV we discuss the remedy of chang-
ing the anode tapering angle.

Figure 1: Simulation geometry, equipotentils

Figure 2: A cascade of H+ and e for 40
iterations



Figure 3: A cascade of H+ and H− for 40
iterations; starting position was tuned until two
consecutive proton emission was observed; note
anyway that acculumation point is as in fig 2

Figure 4: Three attrator; cascade consists of 35
iterations

2 The axisymmetric
model

A realistic (even if not fully detailed) geom-
etry was prepared and edited in the 2D dxf
format (see fig 1); the system is axially sym-
metric around z and eventual misalignments
were not studied. Let rθz be a system of
cylindrical coordinates. Isolators are made
of fiberglass. Simulation of the electric po-
tential φ is straighforward; note that poten-
tial energies and electron rest energies mec

2

are comparable, so that the scaled potential
is here defined as u = −eφ/mec

2.
Here a trajectory is the motion from one

electrode to another, an orbit is a connected
sequence of trajectories starting from the an-

ode until the first time that it returns back to
the anode or until it escapes from the system
or it reaches an isolator. Since we have sev-
eral cathodes (at different voltages), at any
electrode the emitted particle charge sign is
assumed equal to the sign of u,n where n
is the inward normal (for later consistency).
At isolators, tracking is stopped (since a
more complicate physics will be added in fu-
ture models). Mass of negative and positive
particles is assigned by the user.

Fully relativistic equations of motions are
given in Appendix, with m the particle mass,
ie the particle charge and s = c t(me/m)1/2

a convenient scaled time. Assuming now
azimuthal symmetry of u and no magnetic
field, we have that L1 = γr2θ,s is constant
on a trajectory, so that trajectory equations
simplify to

r,ss =
L2

1

γ2r3
+
i

γ

[
u,r −

me

m
r,sw

]
z,ss =

i

γ

[
u,z −

me

m
z,sw

]
(1)

with w = r,su,r + z,su,z; note that γ =
γ1 − i(u1 − u)(me/m) with u1 and γ1 the
initial values. Eq 1 is passed to ’postplot’;
for convenience and verification, we add

θ,ss = −[2(r,s/r) + i(mew/mγ)]θ,s

2.1 Results of simple iterations

The simple iteration model consists in as-
suming that particles are emitted with zero
speed, so at each impact (or iteration), one
trajectory stops and another starts. This is
convenient for plotting many iterations in
the same figure, as shown in fig 2 and 3.
Note that all particles rapidly acquire a ve-
locity perpendicular to the electrode since
this is the E direction; moreover in this case
L1 = 0 and θ is thus constant. In some cases,
the orbit bounces between cathodes for some
iterations before resuming the usual anode-
cathode cycle of bouncing, as seen 3. Also
many starting positions can be traced at the
same time, so that the distance of two par-
ticles can be monitored.

This kind of simulations shows the ex-
istence of some accumulation points, corre-
sponding to the attractors of the problem,
where the orbit start point coincides with
the orbit end point, so that the same orbit is
always repeated. In the particular geometry



studied, different attractors can be found,
in correspondence with the different inter-
mediate electrodes, as shown in Fig 4; each
one influences the motion of particle emitted
in the neighboring positions. Moreover the
upper intermediate electrode has a stronger
attractor, since it has a higher energy and
a better position, allowing it to collect cas-
cades of trajectories originating from most
of the upper region. Other simulations were
performed setting the normal emitted veloc-
ity to a nonzero value, introducing the free
parameters K, that is the fraction of the
parent particle speed which is transmitted
to the emitted particle velocity. Variations
in K only result in a little displacement of
the attractor position, which seems to holds
all its properties, up to values of |K| < 0.5.
Since values over this high limit seem to be
unphysical, we can conclude that attractors
always exists, in 2D analysis.

Effects of earth magnetic field and of
electrode misalignmet should be included in
future studies.

3 3D statistical average

As a second and more detailed analysis, we
take into account the spread of re-emitted
particle velocities and the consequent 3D
motion.

At any point x1 on the anode, we de-
fine a coordinate system for the emitted H+

velocity v1; the components are vn the ve-
locity projection on the inwards normal (in
the r, z plane) and va = rθ̇ the azimutal ve-
locity and vt, the component perpendicular
to them. Note that vt therefore stays in the
r, z plane and is tangential to the electrode.
The start point x1 is here indicated by the
surface coordinates b1, θ1 where b1 is the ar-
clength on the anode (from the axis). Of
course the cylindrical components r1 = r(b1)
and z1 = z(b1) are easily retrieved from ge-
ometry information.

Emission of particles in principle depends
from the impact angle; since this is fairly
near to the normal in most cases, we ne-
glect this difference and thus have a distribu-
tion symmetric around the normal. It also
depends on impact energy, which is piece-
wise constant (it depends on electrode volt-
age difference), so to simplify notation, we
use emission distributions which are inde-
pendent from x1. Let µ+g1d3v1 be the aver-

age number of H+ emitted in a d3v1 inifites-
imal element; in other words the integral of
the distribution g is 1 by definition. Firstly
we use a maxwellian model

g1(v1) = k1 exp
v2
n + v2

t + v2
a

2v2
s1

vn ≥ 0 (2)

with k1 a normalization constant and vs1 =√
Ts/m where Ts is the emission (or sput-

ter) effective temperature; here Ts = 25 eV
so vs1 = 48.9 km/s. Since g1 is passed to
CM as a string, user can easily modify this
function. Similarly g2 is the probability dis-
tribution of the initial velocities at the next
impact (on the cathode).

Typically the third impact is on the an-
ode again at a point x = xf (x1,v1,v2)
after a transit time tt(x1,v1,v2), so that
our orbit history is h2 = v1,v2; in princi-
ple we can consider longer sequences hn be-
fore returning to the anode. The probabil-
ity of an element dw in the hystory space
is the product of emission probabilities; for
2-impacts orbit this is dw(x1,v1,v2) =
g1(v1)g2(v2)d3v1d3v2

Let us define the most important statisti-
cal quantities. The probability of a displace-
ment xd on the anode is

W (x1, xd) =
∫

dw(x1,v1,v2)δ(xf−x1−xd)

(3)
where xf has same arguments of dw. The
loss probability is B = 1−A where

A(x1) =
∫

dxdW (x1, xd) (4)

The anode return frequency is

ν(x1) =
∫

dw(x1, hn)
A(x1)tt(x1, hn)

(5)

The displacement probability moments
Mmn(x) are

=
∫

dw(x,v1,v2)
A(x)tt(x,v1,v2)

(x1
d)
m(x2

d)
n|xd=xf−x

(6)
remembering that x1 ≡ b is the arclength on
the anode and x2 ≡ θ is the azimuth.

3.1 Fokker Planck
approximation

The vector field (on the anode surface)

V (x) = (M10(x), rM01(x)) (7)



with Mij defined in eq. 6 has the meaning
of the average velocity with which a spot of
H+ emission moves on the anode.

At a given time t, let f(x1, t) be the num-
ber (per unit anode area and multiplied by
A(x1)) of H+ whose last anode emission was
at x1 plus the number of H− (multiplied by
A(x1)/µ2) generated by an H+ whose last
anode emission was at x1. This elaborate
definition allows to write a master equa-
tion for f . For average displacements V/ν
very much smaller than the average spread,
the master equation can be simplified to a
Fokker Planck equation. In the marginal
stability regime, this equation becomes

νf = ae+µA{νf−∂ix[Vif−∂jx(Dijf)]} (8)

with sums implied on indexes i and j = 1, 2;
here D is the diffusion tensor including the
moments M20, M11 and M20 and ae repre-
sents any external inputs of H+. Note that µ
can be considered as an eigenvalue, which is
the multiplication factor necessary to have a
solution that neither grows nor decays with
time. For a preliminary analysis, we extrap-
olate eq 8 even for large average displace-
ments V/ν.

3.2 FP solution

Fokker Planck can be easily solved by a sec-
ond application in Comsol Multiphysics[7],
after coefficients Vi(x) and Dij(x) are calcu-
lated by an extensive postprocessing of the
solution in fig. 1, with steps here illustrated.

Fig 5 shows histories starting from two
points, note the black square markers at the
return points xf . Fig 6 gives the W displace-
ment probability with b1 = 0.4 m. Note that
W has a nice gaussian shape as expected; its
computation was possible by samplying the
6D integrand of eq 3 in a lattice L of 717409
points, or histories; actually xf values were
computed for only 324 combinations of v1

and v2 by particle tracing and extended to
the lattice L by interpolation.

At another point b1 = 0.37 m (near the
higher surface field region) there is a greater
dispersion of xf , so that W shape is no
longer nicely gaussian, see Fig 7.

Fig 8 shows an overnight calculation,
with trajectories from 150 points for b1. Sta-
tistical moments are much faster to compute
than W ; fig. 9 showing only the first V com-
ponent for graph readability is thus based

Figure 5: Two impact histories: note the H+

paths (green) and the H− return points on the
anode (black squares); sputter temperature Ts

greatly exaggerated for visiblity

Figure 6: Displacement probability W (x1, xd)
vs xd for b1 = 0.4 m

Figure 7: Displacement probability for
W (x1, xd) vs xd for b1 = 0.37 m



Figure 8: Accumulation of orbits

Figure 9: The velocity coefficient of eq. 8 for
α = 191 mrad; oscillations are near regions

where some particle is lost

Figure 10: Eigenfunction for f with azimuthal
number m = 0

on 107611350 integration points (150 choices
for b1, 847 for v1 and 847 for v2), each one
equivalent in some sense to a Monte Carlo
history.

Note that for azimuthal symmetry, re-
sults are independent from the starting value
of θ1; anyway, there is also a spreading in the
azimuthal direction. The azimuthal sym-
metry implies that an eigenfunction corre-
sponding to the lower µ value does not de-
pend on θ; we label it by the wavenumber

Figure 11: Eigenfunction profiles for m = 0 and
tapering angles α listed in the legend (zoom

near maximum).

Figure 12: Attrator with tapering angle α = 0

Figure 13: Accumulation of orbits with anode
base radius rb = 400 mm

m = 0; this eigenfunction of f shown in fig.
10 confirms that f peaks at a definite ar-
clegth bm on the anode, well corresponding
to the attractor.

4 Geometry changes and
conclusions

With the purpose of studying the effects of
attractors on different geometries, further



analyses were performed. In particular the
tapering angle α (the semi aperture of the
conical support of the anode electrode, as
defined in fig. 4) was changed assuming the
values reported in table I; since we kept the
top part of the anode unchanged, the radius
of base of the conical support rb changes
with α. The main effect of such variation
is again a displacement of the attractor po-
sition, which however maintains all its prop-
erties even in the α = 0 case (cylindrical an-
ode support). Moreover when α = 191 mrad
to make our geometry similar to the real
NBI device mentioned in the introduction[6],
the attractors position fits well the melting
points found experimentally. This confirms
the capability of cascade attractors to pre-
dict the electrodes damages caused by mi-
crodischarges.

Note that for each α the anode coordi-
nate bm of the f eigenvalue maximum found
by the statistical approach always agrees the
accumulation point ba of the 2D simple it-
erations. The 3D nature of this statistical
approach will allow to better include further
effects in the pingpong model, like perturba-
tions of external magnetic field, misaligne-
ment and overheating.

α rb bm ba
[mrad] [mm] [mm] [mm]
0 347 711.44 716.20
52 400 704.93 705.57
100 449 680.40 677.47
145 494 662.27 659.09
191 543 650.39 649.94

Table 1: Variation of the attractor position bm
and ba as function of the tapering angle α or

the anode base radius rb
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Appendix

The relativistic equation of motion F =
mdt(γv) with m the particle rest mass be-
comes (by expanding the derivatives)

F/m = γ[a + γ2β(β · a)] (9)

or solving eq 9 for the acceleration a

a = γ−1[(F/m)− β(β · F/m)] (10)

Now the acceleration is

a = r̂(r̈ − rθ̇2) + θ̂(rθ̈ + 2ṙθ̇) + ẑz̈ (11)

in cylindrical coordinates. With no magnetic
field

F/m = ieE/m = i(me/m)c2∇u (12)

Substituing eqs. 11 and 12 into eq. 10 and
using s definition, we get

r̂(r,ss − rθ2,s) + θ̂(rθ,ss + 2r,sθ,s) +
ẑr,ss = i[∇u− (me/m)x,sw]/γ (13)

with the shorthand w = r,su,r + z,su,z +
(θ,su,θ/r2); this form is numerically conve-
nient both for electrons and protons.




