

3D Modeling of Microwave Plasma using Füner Model

COMSOL conference 2009

www.inopro.com

Summary

INOPRO

Objectives

Models

Methodology

Geometry

Results

Conclusions

Created in October 2000

Consulting for process or product simulation

- 11 engineers / turnover 850k€
- Markets : Microelectronics, Chemistry, nuclear industry...

CFD

- Thermics (solids, liquids, gaseous)
- Transport phenomena, reactivity
- Electromagnetism plasma
- Mechanics

• Networking with other consulting experts or researchers

COMSOL conference 2009

www.inopro.com

innovation - Optimization - Process

Summary

INOPRO

<u>Objectives</u>

Models

Methodology

Geometry

Results

Conclusions

Industrial equipment design and optimizationPhysical processus explanation

- Use of simplified model
- Model assumptions validation
- Models parameters

Microwave plasma of nitrogen

COMSOL conference 2009

www.inopro.com

Summary

INOPRO

Objectives

Models

Methodology

Geometry

Results

Conclusions

- Neutral mass, momentum, and thermal conservations (« ns » and « htgh » COMSOL modes)
- Electromagnetism : « rwf » COMSOL mode for 2,45GHz propagation,
- Electron density : $\nabla (-D_e \nabla n_e) = \gamma . (E E_M) + n_{emin}$ (Insteed of derive diffusuion)
- Permitivity and conductivity depend on :
 - Electron density
 - Electron/neutral colision frequency
- Nitogen plasma, 10 Torr

Summary

INOPRO

Objectives

Models

<u>Methodology</u>

Geometry

Results

Conclusions

Em, nmin, gamma are not knownCollision frequency isn't well known

First DOE on all parameters
→ no sensibility to em and nmin

Second DOE, surface of response on gamma and ve
 → best fitting for four working points

Geometry

Summary INOPRO Objectives Models Methodology Geometry Results Conclusions

COMSOL conference 2009

www.inopro.com

Results examples

Do qualitative comparison with experiments

COMSOL conference 2009

INDPi

www.inopro.com

Results examples

 $\times 10^{10}$

Collision frequency Coupe: Venf [1/K] Streamline: Champ de vitesses Couleurs des Streamlines: Champ de vitesses [m/s] Maxi: 0.897 Maxi: 4.28e10 Summary 0.8 INOPRO 0.7 3.5 Objectives 0.6 3 N Models 0.5 2.5 Methodology 0.4 2 Geometry 0.3 <u>Results</u> 0.2 Conclusions 0.1

COMSOL conference 2009

INOPRO

www.inopro.com

MILAN 15/10/2009

1.5

1

Quantitative Results

Good fitting for four working points / 1 parameters

COMSOL conference 2009

www.inopro.com

Conclusions

Summary

- INOPRO
- Objectives
- Models
- Methodology

Geometry

Results

<u>Conclusions</u>

- We simulate a nitrogen microwave plasma
- We use a simplified plasma model (1 parameter)
- A DOE technique allow us to find a good agreement betwenn simulated and measurzed reflected power for four working points
- We will use this kind of model for development, design or optimization purpose
- We may improve model precision by using derive/diffusion

Thank you

herve.rouch@inopro.com

