Including Expert Knowledge in Finite Element Models by means of Fuzzy based Parameter Estimation

O. Krol, N. Weiss, T. Bernard & F.Sawo*

Content

- Introduction
- Modelling of Flow and Transport Processes
- Modelling of Algea Growth
- Coupling of Models
- Results
- Summary

Comsol Conference, Milano, 14.-16. October 2009

*Fraunhofer-Institut für Informations- und Datenverarbeitung IITB Fraunhoferstraße 1, 76131 Karlsruhe oliver.krol@iitb.fraunhofer.de

Eutrophication of water bodies

Eutrophication:

- Toxicity
- Hygiene conditions
- Collapse of water bodies

Aim:

 Prediction of the development and distribution of Algea

Problem:

- Complex growth models
- Parameterization of spatially distributed models

Idea:

- Combination of FEM and Fuzzy-Methods
- Integration of expert knowledge
- Nonlinearity of biological growth

Navier - Stokes - Equations:

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \left(\rho \vec{u}\right) = 0$$
$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \operatorname{div} \vec{u} = -\frac{1}{\rho} \operatorname{grad} p + \eta \operatorname{div} \left(\operatorname{grad} \vec{u}\right)$$

Transport of nutrients and biomass:

$$\frac{\partial c_{N}}{\partial t} = -\vec{u} \cdot \text{grad } c_{N} + R_{N}(t)$$
$$\frac{\partial c_{B}}{\partial t} = -\vec{u} \cdot \text{grad } c_{B} + R_{B}(t)$$

- Neglect of dispersion and diffusion
- Neglect of 3. dimension
- Ideal units of nutrients N

Modelling of Growth of Biomass by Fuzzy

Input

- Flow velocity
- Distribution of nutrients
- Water temperature
- Light
- Growth rate of biomass Output

Assumptions

- u(x,t) and $c_N(x,t)$ from FE-model
- Temperature and sunshine duration depend on geographic location and season

Modelling of Algea Growth

Biological submodel

- Knowledge represented by *if-then*-rules
- Fuzzyfication of input data
- Evaluation of *if-then*-rules
- Derivation of crisp values for output variable(s)

Examples

- IF "Nutrients = high" and "Temperature = high" THEN "Growth = high"
- IF "Nutrients = low" and "Temperature = high" THEN "Growth = low"

Membership-function describing fuzzy sets

<u>Harmful Algal B</u>looms <u>Expert System</u>

Result of Fuzzy-Modelling:

Nonlinear Look-up-table for biological growth $R_B=f(T,c_N,u=const))$

Coupling of Models

Coupling of Submodels

 $R_N = -k \cdot R_B \rightarrow 1$ Unit of biomass requires k units of nutrients

Complete Model

Coupling of Models

Coupling of Submodels

Simulation Results

Application to Orbetello Sea

- Water body of about 27 km² at western coast of Italy
- 2 inflows and 1 outflow
- Strong Eutrophication due to intense agriculture and fish farming

Simulation Results

FE-Model: No Biological Growth

Profile of Flow and Nutrients after 1h

Simulation Results

Complete Model

Profile of Biomass and Nutrients after 1h and k= -10

Problem in spatially distributed transient models

- Complex models for biological growth
- Requirement of big number of parameters
- Computing time

Solution Concept

- Mathematically exact description "as far as possible"
- Qualititative uncertainties described by Fuzzy-models
- Direct incoporation of expert knowledge
- Nonlinearities

Literature

- COMSOL Multiphysics User's Guide. 2007.
- Elisabetta Giusti. Modelling the interactions between nutrients and the submersed vegetation in the orbetello lagoon. *Ecological Modelling*, 184:141–161, 2005.
- Habes: Harmful algal blooms expert system. <u>http://www.habes.net</u>.
- Jean-Michel Hervouet. Hydrodynamics of Free Surface Flows. John Wiley & Sons, 2007.
- Jaanineh/Maijohann. Fuzzy-Logik und Fuzzy-Control. Vogel Buchverlag, 1996.
- Marsili-Libelli. Fuzzy prediction of the algal blooms in the ortobello lagoon. Environmental Modelling & Software, 19:799-808, 2004.

