
Hyperbolic Heat Transfer Equation for Radiofrequency Heating:
Comparison between Analytical and COMSOL solutions
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Abstract: The radiofrequency heating (RFH)
is widely employed to heat biological tissue
in different surgical procedures. Most models
analyze the RFH employing a parabolic heat
transfer equation (PHTE) based on Fourier’s
theory. The PHTE can be used for prob-
lems involving long heating times or low ther-
mal gradients. However, when the problem
involves short heating times or extreme ther-
mal gradients it is needed to solve it using the
hyperbolic heat transfer equation (HHTE),
where a wavy behavior of heat conduction
with a finite thermal propagation speed is as-
sumed . We have recently proposed a model
to study the temperatures profiles which are
produced in biological tissue when it is heated
by RF introducing the effect of the blood per-
fusion. The electrical-thermal coupled prob-
lem has been analytically solved by using the
HHTE. COMSOL Multiphysics can be used
to solve this kind of problems numerically.
We compare the results obtained by COMSOL
with those obtained by the analytical solution
of the problem.

Keywords: Hyperbolic heat equation,
parabolic heat transfer equation, radiofre-
quency heating, radiofrequency ablation.

1 Introduction

Radiofrequency heating (RFH) has been em-
ployed in a multitude of minimally intrusive
operational techniques in the modern surgery.
Changing the corneal curvature to correct re-
fractive errors [14], the elimination of cardiac
arrhythmias [3] and thermal destruction of tu-
mors [15] are examples of application of RFH.
RFH is based on the point heating of target
zones of human tissue in which a great amount

of heat is transferred on a very small time
scale.

The equation for the thermal current con-
servation with a given internal heat source
S(x, t),

∇ · q(x, t) +
k

α

∂T

∂t
(x, t) = S(x, t), (1)

is generally used as the fundamental relation
to model the heat transfer. q(x, t) represents
the thermal flux and T (x, t) is the tempera-
ture at point x ∈ D in the biological tissue
domain D ⊂ R3 at time t ∈ R+, figure 1; k
denotes the thermal conductivity and α = k

ηc
is the diffusivity, where η is the density and c
is the specific heat of the material under con-
sideration. The product ρc is the well known
volumetric heat capacity. The explicit decom-
position of the internal heat sources, S(x, t),
was introduced by Pennes [10] in the bioheat
equation.

Traditionally, the thermal flux term of
equation (1) has been modelled by the
Fourier’s theory, q(x, t) = −k∇T (x, t), then
(1) is a parabolic heat transfer equation
(PHTE). In this case, an infinite thermal en-
ergy propagation speed is assumed, which pro-
duces that any local temperature disturbance
causes an instantaneous perturbation in the
temperature in the medium [4]. This model is
specially used for modelling the heating of bi-
ological tissue in the case of long heating time
or low thermal gradients.

At the present, the minimally intrusive op-
erational techniques in the modern surgery
consist in RFH on very small time scales where
high thermal gradients are allowed. For this
cases the classical model (PHTE) fails [9], then
it seems necessary an alternative theory with
a finite thermal propagation speed for describ-
ing these phenomena. For these reasons the
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interest of solving heat transfer problems with
an hyperbolic heat transfer equation (HHTE)
has increased in the last years [5, 13].

The general form of the hyperbolic heat
transfer equation (HHTE) is (see [9])

−∆T (x, t) +
1
α

(
∂T

∂t
(x, t) + τ

∂2T

∂t2
(x, t)

)

=
1
k

(
S(x, t) + τ

∂S

∂t
(x, t)

)
(2)

where τ is the thermal relaxation time. k, η, c
and τ are assumed to be constants. Note that
PHTE, equation (1) is obtained if we consider
τ = 0 in (2), i.e. infinite thermal energy prop-
agation speed.

Unfortunately the vast majority of heat
transfer problems that arise from real and
practical situations involves complex geome-
tries, unusual initial or boundary conditions,
or they are non-linear problems. These con-
ditions lead us to use numerical methods for
solving them. Among a widespread numerical
methods, the Finite Element Method (FEM)
and the Finite Differences Method seem a
good condidates to solve these real and prac-
tical problems. In this work we use COMSOL
Multiphysics.

Until now different problems about the
RFH of biological tissue without considering
blood perfusion have been solved [5, 7, 6]. The
goal of this paper is the numerical study, ac-
cording to the HHTE, of the temperature pro-
files produced in the biological tissue when
RFH is applied taking into account the effect
of the blood perfusion. The comparison of the
numerical with the analytical results is also
shown in this work.

2 Theoretical Modelling

Consider a spherical active electrode com-
pletely embedded in the biological tissue. The
radius of the electrode is r0. The tissue is con-
sidered homogeneous with infinite dimensions
and the dispersive electrode to be placed at
the infinity. Due to the geometry model we
use spherical coordinates, and as the model
presents radial symmetry, an one-dimensional
approach is possible, r being the dimensional
variable. Consequently, the model domain is
restricted to the biological tissue, i.e. the elec-
trode body is not included in the model. In
figure 1 a schematic view of the problem is
shown.

Asymptotic Boundary
Condition

or
PML Boundary Condition

r

r0

Time dependent
Boundary Condition

Biological Tissue
Domain

Figure 1: Schematic view of the problem. r0 is
the radius of the electrode and r is the radius of

the tissue domain.

The infinite dimensions of the biological
tissue will be analyzed considering a biolog-
ical tissue domain big enough to neglect the
reflections produced by the exterior boundary
in the region near the electrode (asymptotic
boundary condition).We use the PDE coeffi-
cient form with time dependent solver in or-
der to implement all the previous equations in
COMSOL. We have made different sensibility
analysis based on the time step. In order to
compare the numerical results with the ana-
lytical ones we need to apply both solutions
to a specific case. As biological tissue we have
chosen the liver.

2.1 Governing Equation

The general expression of the HHTE can be
seen in equation (2). Wee have to define the
internal heat sources according to the problem
we want to solve in this work. The bioheat
equation [10] provides us the explicit decom-
position of the internal sources,

S(x, t) = Ss(x, t) + Sp(x, t) + Sm(x, t), (3)

where the subindex s denotes a surgical heat
source (e.g. laser or radiofrequency treat-
ment), p refers to blood perfusion, and m to
any source related to metabolic activity. In
our problem the source term for the RFH mod-
eling (i.e. the Joule heat produced per unit
volume of tissue, Ss(r, t)) can be expressed as
[2]:

Ss(r, t) =
P r0

4 π r4
H(t) (4)

where P is the total applied power (W ) and
H(t) is the Heaviside function, which allows



to model the power application by means of a
step at t = 0. And the source term related to
blood perfusion can be expressed as [10]:

Sm(r, t) = −ηbcbwb(T − T0) (5)

where ηb is the density of the blood, cb the
specific heat of the blood, wb is the perfusion
blood flux and T0 is the supposed constant
blood temperature. In our case we do not con-
sider internal heat sources related to metabolic
activity.

Introducing (4) and (5) in the expression
of equation (2) in spherical coordinates the re-
sulting governing equation is

− α

(
∂2T

∂r2
(r, t) +

2
r

∂T

∂r
(r, t)

)
+

ζ
∂T

∂t
(r, t) + τ

∂2T

∂t2

=
P α r0

4 π k r4

(
H(t) + τδ(t)

)
−B(T − T0) (6)

where δ(t) is Dirac’s function, B = αηbcbwb

k
and ζ = 1 + τB.

2.2 Initial and Boundary Conditions

The initial conditions are

T (r, 0) = T0,
∂T

∂t
(r, 0) = 0, ∀r > r0 (7)

where T0 is the initial temperature (i.e. tissue
temperature before heating). We use the same
symbol than for the blood temperature since
both are equal.

Respect to the boundary conditions

lim
r→∞

T (r, t) = T0 ∀ t > 0. (8)

To write the boundary condition at r = r0

we shall adopt a simplification assuming the
thermal conductivity of the electrode is more
larger than that of the tissue (i.e. assuming
that the boundary condition at the interface
between electrode and tissue is mainly gov-
erned by the thermal inertia of the electrode)
[2]. After some algebraic modifications, the
boundary condition in r = r0 can be written
as

τ η0 c0 r0

3 k

(
1
τ

∂T

∂t
(r0, t) +

∂2T

∂t2
(r0, t)

)

=
∂T

∂r
(r0, t). (9)

3 Use of COMSOL Multiphysics

In this paper the numerical simulation has
been performed using COMSOL Multiphysics
software version 3.2b. COMSOL presents sev-
eral models to solve a wide range of PDEs. In
our case we have chosen a a two-dimensional
problem using the PDE coefficient Form op-
tion for a Time-dependent analysis, wave type.
As we mentioned, for the case of the analytical
solution, the model can be solve easily assum-
ing radial symmetry, i.e. 1D analysis. How-
ever, we prefer a 2D analysis for our problem
since it is more visual than a 1D solution and
the solution obtained takes a similar compu-
tational time. The use of a 2D geometry, in-
stead of the 1D geometry, does not mean any
significant change in the problem. The prob-
lem geometry can easily drawn with the CAD
tools of COMSOL, see figure 1.

Using the different menus of COMSOL we
can introduce the governing equation (6). In
order to obtain a numerical model of the an-
alytical one introduced in last sections, we
have used the coefficient expression of PDE
problem in COMSOL. We can introduce eas-
ily the proper parameters of our model. Anal-
ogously to the analytical model, we used the
source term in equations (4) and (5), the ini-
tial conditions (7) and the boundary condi-
tions (8) and (9). In the case of the Heaviside
and delta’s functions of the governing equation
we used the COMSOL functions flc2hs(t, p)
[1] and fldc2hs(t, q), respectively. Exactly,
y = flc2hs(x, p) computes the values of a
smoothed version of the Heaviside function
y = (x > 0), the function is 0 for x < −p,
and 1 for x > p. By a sensibility analysis we
chose p = 0.01 and q = 0.05.

The automatic mesh generated by
COMSOL is enough to obtain the solution.
The mesh is formed with triangular elements.
We made a sensibility analysis and checked
that a more refinished meshes did not pro-
duce results closer to the analytical ones.

Finally, the Solver of COMSOL must be
configured taking into account the temporal
characteristics of the analysis. The maximum
time interval used was t ∈ [0, 180] s. For a sen-
sibility analysis we chose in the General menu
a time-step of 1 s and from the Time Step-
ping menu we selected that the times to store
in output are the times steps from the solver.
The times steps taken by the solver were be



chosen “strict”.

4 Physical parameters

In this work we have solved the problem con-
sidering liver as biological tissue, and the phys-
ical properties shown in Table 1 for the blood
and the electrode.

Physical Liver Blood Electrode
property
Density

η
(kg/m3) 1060 1000 21500

Specific heat
c

(J/kg ·K) 3600 4148 132
Conductivity

k
(W/m ·K) 0.502

Table 1: Physical properties of the Liver, blood
and electrode used in this work.

In the case of the perfusion coefficient wb

we used two values: wb = 0 (corresponds to
the case without perfusion) and wb = 0.01 s−1.
The blood and tissue initial temperatures were
the same T0 = 37 ◦C. The applied power was
of P = 1 W.

There is a lack of experimental data re-
garding the thermal relaxation time τ of bi-
ological tissue. In fact, although Mitra et al
found a value of τ = 16 s in processed meat [8],
no values have been measured for non excised
tissues, which are the usual radiofrequency ab-
lation target (heart, liver or cornea). For this
reason we assumed two different values of 16 s
from [8] and 1 s from [12].

In the case of geometrical parameters, in
this work r0 is considered 0.0015 m. The value
of r has been chosen as R = 0.4 m from a sensi-
bility analysis. In this analysis we have taking
into account that the R value does not affect
the solution obtained, and neither be unnec-
essarily too large.

5 Results

The analytical solution of the HHTE without
considering the perfusion term has been an-
alyzed in previous works [5, 7, 6]. In a re-

cent work we have studied the RFH in bio-
logical tissue using HHTE including the per-
fusion term [11]. In this work we obtain the
numerical solution of equation (2) considering
the perfusion term by means of COMSOL. We
will compare the analytical and the numerical
results.

5.1 Analytical and Numerical Solutions

The temperature evolution evaluated in the
point x = 2r0 has been obtained both analyt-
ically and numerically for two heating times,
60 s and 180 s, and for two different values of
the thermal relaxation time τ = 16 and τ = 1
s. We have also obtained the value of the tem-
perature evolution without perfusion, ωb = 0
s−1, in order to compare the results with the
case where perfusion is considered, ωb = 0.01
s−1.

As we have mentioned above we solve a
1D problem analytically, however numerically
we solve a 2D problem with axial symmetry.
Figure 2 shows the temperature profiles ob-
tained numerically. The color scale represents
the temperature in degrees Celcius ( ◦C) and
the graph is obtained considering perfusion
ωb = 0.01 s−1 and the relaxation time τ = 1
s. The graph correspond to temperature dis-
tribution in the biological tissue at the instant
t = 60.

Figure 2: 2D and 3D temperature profiles
processed by COMSOL at t = 60 s in the

biological tissue with perfusion (ωb = 0.01 s−1)
and τ = 1 s.

Figure 3 shows the temperature evolution
until t = 60 s (A) and until t = 180 s (B) at
point x = 2r0. The dashed line corresponds to
the case with perfusion (wb = 0.01 s−1) and
the continuous line to the case without per-
fusion (wb = 0 s−1). Both graphics (A) and
(B) were obtained using the numerical solu-
tion with two different values of the thermal



relaxation time (τ = 16 and τ = 1 s). The
lines shown in these graphs correspond to a
cross-section of the 2D solution provided by
the numerical model.

Figure 3: Numerical results at point x = 2r0 with
perfusion (dashed line, ωb = 0.01 s−1) and

without perfusion (continuous line, ωb = 0 s−1)
obtained using the numerical solution with two
different values of the thermal relaxation time

τ = 16 and τ = 1 s. (A) until 60 s, (B) until 180
s.

The analogous analytical results of the fig-
ure 3 are shown in figure 4. Dashed line repre-
sents the analytical results for the case without
perfusion. The result considering perfusion is
represented with continuous line.

Figure 4: Analytical results at point x = 2r0 with
perfusion (dashed line, ωb = 0.01 s−1) and

without perfusion (continuous line, ωb = 0 s−1)
obtained using the numerical solution with two
different values of the thermal relaxation time

τ = 16 and τ = 1 s. (A) until 60 s, (B) until 180
s.

6 Discussion

6.1 Singularities

One of the most remarkable characteristic of
the solution of the HHTE is the presence
of cuspidal-type singularities [6]. This is a
temperature peak which travel through the
medium at finite speed. These peaks cannot
be observed in the solution from the PHTE.

In figure 4 we can observe the presence of
these singularities in the analytical solution.
A very satisfactory characteristic of the nu-
merical solution is that it also shows the sin-
gularities found in the analytical solutions of
the HHTE. This fact can be clearly seen in fig-
ure 3. We observe the singularity at the same
time. As we expect for the numerical solution
the temperature peak is smoothed. Indeed, we
had to change some automatic options of the
COMSOL solver in order to observe the tem-
perature peak. Specifically, the times to store
in output must be the times steps from the
solver. We have marked as “strict” the time
steps taken by the solver.



6.2 Effect of the blood perfusion

Our previous works [5], [7] and [13] based on
the study of RFH in biological tissue using
HHTE did not include the perfusion term. In
the present study we added this term. Com-
paring the graphics obtained with and with-
out perfusion (wb = 0.01 and wb = 0 s−1)
we can conclude that considering the perfusion
term the temperatures obtained are lower that
those predicted by the solution without perfu-
sion.

6.3 Analytical versus Numerical solution

If we compare figures 3(A) and 4(A) we ob-
serve that the behavior of both solutions at
point x = r0 is practically identical. However,
there exist differences in temperatures in all
the cases. These differences increase with the
time: at time t = 10 s there exist not signif-
icant differences between both solutions (≈ 2
or 3 ◦C), at t = 20 s the differences have in-
creased (≈ 5 ◦C) and at t = 60 s there exist
considerable differences (≈ 13 ◦C).We do not
have a clear reason to explain this fact. How-
ever, we suspect that it is related with the er-
ror that is implicit in all the numerical solu-
tions. In this way, this error is small at the
beginning of the heat process and with every
time step it is increasing. We have checked
that further the considered point is, lower the
differences are.

7 Conclusion

In this work we have obtained the numer-
ical solution of the RFH of biological tis-
sue using the HHTE by means of software
COMSOL Multiphysics. We can also observe
that COMSOL can be used to solve the HHTE
similarly as in the case of the analytical model.
This numerical solution opens the possibilities
to analyze the HHTE in more realistic cases
as for example more complicated geometries
(more realistic electrode and tissue geometries
with irregular boundaries) or different thermal
characteristics of the problem.
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and E.J. Berjano, Modeling the radiofre-
quency ablation of the biological tissue



using the hiperbolic heat equation: Ana-
lytical and numerical solution, Submited
to Physics in Medicine and Biology.

[12] T.C. Shih, H.S. Kou, C.T. Liauh, and
W.L. Lin, The impact of thermal wave
characteristics on thermal dose distribu-
tion during thermal therapy: a numerical
study, Med. Phys. 32 (2005), no. 9, 3029–
3036.

[13] M.M. Tung, M. Trujillo, J.A.
López Molina, M.J. Rivera, and E.J.
Berjano, Modeling the heating of biolog-
ical tissue based on the hyperbolic heat
transfer equation, Mathematical and
Computer Modeling 50 (2009), 665–672.

[14] G.O. Waring 4th and D.S. Durrie, Emerg-

ing trends for procedure selection in con-
temporary refractive surgery: consecutive
review of 200 cases from a single center,
J. Refract. Surg. 24 (2008), 419–423.

[15] J.C. Zhu, T.D. Yan, and D.L. Morris, A
systematic review of radiofrequency abla-
tion for lung tumors, Ann. Surg. Oncol.
15 (2008), 1765–1774.

Acknowledgements

This work received financial support from the
Spanish “Plan Nacional de I+D+I del Min-
isterio de Ciencia e Innovación” (Grant No.
TEC2008-01369/TEC) and from the MEC
and FEDER Projects No. MTM2007-64222
and MAT2009-09438.




