Presented at the COMSOL Conference 2009 Milan

Bielefeld University Department of Physics A. Weddemann, A. Auge, C. Albon, F. Wittbracht, A. Hütten

Detection of magnetic particles by magnetoresistive sensors

D2 PHYSICS

Bielefeld University

Motivation

Tunneling magnetoresistance sensors

Detection of biomolecules, e.g. in point-of-care-diagnostics

$$\mathsf{TMR} = \frac{R_P - R_0}{R_0}$$

Questions:

- yes / no-answer
- particle position
- particle number

Good understanding of the relation between particle properties and signal necessary.

How to describe ferromagnetism?

Ferromagnetism

Governing equation is Landau-Lifshitz Gilbert:

A. Weddemann

3

How to describe ferromagnetism?

Thin films and superparamagnetic particles

Implementation into COMSOL

5

Self generated GUI

A. Weddemann

Examples

6

Micromagnetics - A trilayer system

Examples

Particle dynamics - Two-dimensional particle assemblies

Dynamics of particles can be complex:

Measuring tasks

determine position of a single particle
measure number of particles in range

 $\langle \delta \boldsymbol{m} \rangle = \frac{1}{A_{\text{layer}}} \int_{A_{\text{layer}}} \langle \boldsymbol{m}_{1}, \boldsymbol{m}_{2} \rangle d\boldsymbol{r}$

A. Weddemann

Measuring single particles

TMR-maps

Probe particle of r = 20 nm and $M_s = 1000$ kA/m at different heights

Rapid decrease in respect to particle sensor distance

A. Weddemann

Measuring single particles

Comparison to experiment

10

Measuring tasks

- measure number of particles in range
 - varying *a* leads to different sensor coverage

Measuring several particles

Comparison to experiment

Influence of sensor coverage:

A. Weddemann

Conclusion & Outlook

D2 PHYSICS

13

Bielefeld University

www.spinelectronics.de

Conclusion

- We have successfully implemented micromagnetic equations for the calculation of ferromagnetic thin film systems
- Theoretical predictions on spatial and number resolutive detection are in very good agreement with experimental findings

Outlook

- Better quantification of cluster detection
- Use this model to guide the design of new sensor layouts (see also Poster session)

Further reading:

[1] A. Weddemann et al., A hydrodynamic switch: microfluidic separation system for magnetic beads, Appl. Phys. Lett. 94, 173501 (2009)

[2] A. Auge et al. Magnetic ratchet for biotechnological applications, Appl. Phys. Lett. 94, 183507 (2009)

[3] A. Weddemann et al., Particle flow control by induced dipolar particle interactions, submitted to Lab-Chip

[4] A. Weddemann et al., Dynamic simulations of the dipolar driven demagnetization process of magnetic multi-core nanoparticles, subm. to JMMM

[5] A. Weddemann et al., On the resolution limits of tunnel magnetoresistance sensors for particle detection, submitted to New Jour. Phys.

[6] C. Albon et al., Tunneling magnetoresistance sensors for high resolutive particle detecion, Appl. Phys. Lett. 95 (2009)

[7] C. Albon et al., Number sensitive detection and direct imaging of dipolar coupled magnetic nanoparticles by tunnel magnetoresistive sensors, accepted for publication in Appl. Phys. Lett.

[8] A. Weddemann et al., Towards the detection of single nanoparticles: new strategies by adjustment of sensor shape, subm. to Appl. Phys. Lett.