Swiss Federal Nuclear Safety Inspectorate ENSI

Benchmark Calculations with COMSOL

Transport of Radionuclides through Clay and Bentonite Barriers in a Geological Repository

Manuel Lorenzo Sentis, Felix Altorfer, Martin Herfort (ENSI) Andreas Jakob, Georg Kosakowski (PSI) Sven Friedel (COMSOL)

COMSOL Conference Milan, Italy, October 14-16, 2009

- Context of the benchmark study
- Physical problem and conceptual model
- Results
- COMSOL topics
- Conclusions

Geological Repository for Radioactive Waste Disposal

Sectoral Plan for Site Selection

U

Swiss Federal Nuclear Safety Inspectorate ENSI

- Supervisory authority for nuclear safety and radiation protection in nuclear facilities in Switzerland
- For Radioactive waste disposal:
 - Review of the site proposals and safety assessments submitted by the Swiss implementer Nagra
 - Independent research
- 10 scientist of different disciplines

Numerical Simulation Tools

- In the past, ENSI (former HSK) developed own simulation tools (femtrac, tube)
- Today, international recognized codes like Tough2 and COMSOL are available
- These codes are not used by the implementer
 → cross-checking the results
- Numerical simulations will play a major role in the current site selection process

Benchmark

- Verification of the codes Tough2-EOS9nT and COMSOL
- Verification of our capabilities to use the codes
- Benchmark: Calculations of a feasibility study, performed by Nagra and repeated by PSI:
 "Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate level waste" NTB 02-05 (Nagra)
- Collaboration of PSI and ENSI
- Preparation for the calculations within the sectoral plan

Simplifications: Geology

Simplifications: Dimensions

0

Simplifications: Symmetry

Conceptual Model

Selection of Codes and Nuclides

Critical Radionuclides were chosen:

- C-14
- Ca-41
- CI-36
- I-129
- Se-79

Several Codes were used:

- COMSOL (ENSI)
- Tough2-EOS9nT (ENSI)
- Picnic (Nagra, Colenco)
- Frac3dvs (PSI)

Boundary and Initial Conditions

Stationary flow and transient solute transport

Radionuclides Properties

Parameter	Unit	Ca-41	C _{org} -14	CI-36	I-129	Se-79	
Molecular diffusion coefficient D_0	m² a-1	1.75·10 ⁻²	1.75·10 ⁻²	1.89·10 ⁻³	1.89·10 ⁻³	1.89·10 ⁻³	
Decay constant	a ⁻¹	6.73·10 ⁻⁶	1.21·10 ⁻⁴	2.31·10 ⁻⁶	4.41·10 ⁻⁸	6.3·10 ⁻⁷	
Half life $T_{_{1\!/_2}}$	а	1.03·10 ⁵	5.73·10 ³	3.10 ⁵	1.57·10 ⁷	1.1·10 ⁶	
Bentonite	Unit	Ca-41	C _{org} -14	CI-36	I-129	Se-79	
Effective Porosity	-	0.36	0.36	0.05	0.05	0.05	
Effective diffusion coefficient D _e	m²/s-1	2·10 ⁻¹⁰	2·10 ⁻¹⁰	3·10 ⁻¹²	3·10 ⁻¹²	3.10-12	
Distribution coefficient for sorption K_s	m³ kg⁻¹	3·10 ⁻³	0	0	5·10 ⁻⁴	0	
Tortuosity t	-	1.0	1.0	1.0	1.0	1.0	
Opalinus Clay	Unit	Ca-41	C _{org} -14	CI-36	I-129	Se-79	
Effective Porosity	-	0.12	0.12	0.06	0.06	0.06	
Effective diffusion coefficient D _e	m²/s-1	1·10 ⁻¹¹	1.10 ⁻¹¹	1.10 ⁻¹²	1·10 ⁻¹²	1·10 ⁻¹²	
Distribution coefficient for sorption K_s	m ³ kg ⁻¹	1·10 ⁻³	0	0	3·10 ⁻⁵	0	
Tortuosity t	-	0.15	0.15	0.278	0.278	0.278	

Stationary Flow Field

Benchmark Calculations with COMSOL | Comsol Conference, Milan, Italy 2009 M. Sentis, F. Altorfer, M. Herfort, A. Jakob, G. Kosakowski, S. Friedel

Ū

Concentration

Concentration

Results, Release Rates for CI-36

Results, Release Rates for CI-36

Peak Concentration

Nuclide	Frac3dvs		Picnic		Comsol		Tough2-EOS9nT	
	Max. [mol/a]	t _{max.} [a]	Max. [mol/a]	t _{max.} [a]	Max. [mol/a]	t _{max.} [a]	Max. [mol/a]	t _{max.} [a]
Ca-41	2.6·10 ⁻¹⁰	6.3·10 ⁹	2.8·10 ⁻ 10	6.3·10⁵	2.8·10 ⁻¹⁰	6.2·10 ⁵	2.8·10 ⁻¹⁰	6.2·10 ⁵
C _{org} -14	4.5·10 ⁻⁸	4.5·10 ⁴	5.9·10 ⁻⁸	4.5·10 ⁴	4.2·10 ⁻⁸	4.6·10 ⁴	4.2·10 ⁻⁸	4.5·10 ⁴
Se-79	5.3·10 ⁻⁷	1.4·10 ⁶	6.3·10 ⁻⁷	1.3·10 ⁶	5.6·10 ⁻⁷	1.4·10 ⁶	4.8·10 ⁻⁷	1.4·10 ⁶
CI-36	1.4·10 ⁻⁵	3.6·10 ⁵	1.9·10 ⁻⁵	3.2·10 ⁵	1.4·10 ⁻⁵	3.6·10 ⁵	1.2·10 ⁻⁵	3.6·10 ⁵
I-129	2.2·10 ⁻⁴	1.3·10 ⁶	2.3·10 ⁻⁴	1.3·10 ⁶	1.9·10 ⁻⁴	1.4·10 ⁶	1.5·10 ⁻⁴	1.4·10 ⁶

Maximum difference – 15%

Conclusions

- The generally good agreement between the results of different codes for various radionuclides cross-verifies the modelling approach and tools
- Small differences between the results can be attributed to different numerical methods
- The release curves provided by Frac3dvs and COMSOL are mostly in between those of Tough2-EOS9nT and Picnic
- Picnic takes mostly the largest values of concentration on the top of the breakthrough curve, probably because of the one-dimensional approach
- Tough2-EOS9nT takes mostly the largest values of concentration at the beginning of the curve, probably because of the interpolation of the source term
- Tough2-EOS9nT and COMSOL will further be used by ENSI