Presented at the COMSOL Conference 2009 Milan

European COMSOL Conference, Milan, Italy 14-16.10.2009

Large Scale 3D Flow Distribution Analysis in HTPEM Fuel Cells

UNIVERSITÄT DUISBURG ESSEN C. Siegel*, G. Bandlamudi, N. van der Schoot, A. Heinzel

*c.siegel@zbt-duisburg.de

ZBT Duisburg GmbH Universität Duisburg-Essen Institut für Energie- und Umweltverfahrenstechnik

Introduction:

- ZBT Duisburg GmbH
- High temperature PEM (HTPEM) fuel cell
- Aim of this 3D study

Methodology:

- Computational subdomains
- Governing equations
- Solver settings, meshing and solution procedure

Experimental and theoretical results:

- PIV-measurements
- Experimental/simulation results
- Theoretical results

Summary:

- Conclusion
- Outlook

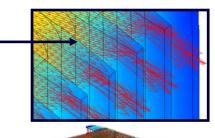
ZBT Duisburg GmbH established in 2001 TAZ established in 2008 Hydrogen and fuel cell related activities in several divisions \rightarrow LTPEM and HTPEM fuel cell R&D

Focusing the HTPEM technology, e.g.:

- Bipolar-plate and component development
- Fuel cell and fuel cell stack prototype design
- Operation (short and long-term)
- System integration
- Locally resolved measurements

Theoretical analysis, e.g.:

- Analytical calculations
- CFD/FEM modeling and simulation
- System simulation
- \rightarrow coupled to experimental investigations



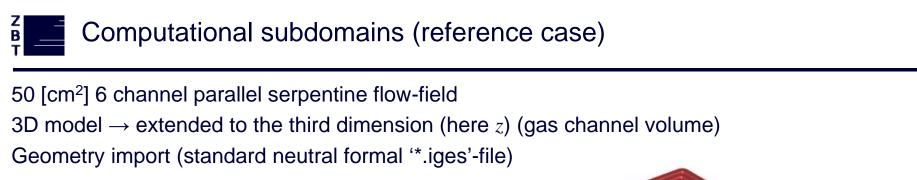
Cathode

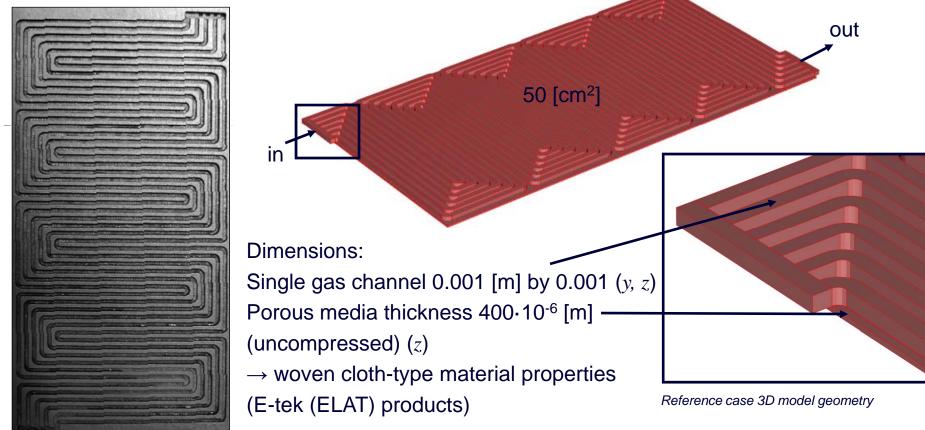
Power output

High temperature PEM (HTPEM) fuel cells

- \rightarrow HTPEM fuel cells electrochemically convert energy stored in a fuel and oxidant into electricity
- \rightarrow Benefits against the LTPEM fuel cell technology (e.g. no humidification needed)
- \rightarrow Relatively new technology (e.g. H₃PO₄ behaviour during operation not fully understood yet)

Overall goal:


- Development a complete large scale 3D HTPEM fuel cell assembly model
- Coupled CFD/FEM analysis
- 2D and 3D-studies presented at the European COMSOL conferences (2007 and 2008)


Aim of this study:

- Modeling and simulating fluid-flow behaviour
- Evaluate flow-field performance (6 different types)
- Compare results to PIV-measurements
- → Optimize flow-field layout (bipolar-plate production)?

Bipolar-plate mass production at the ZBT: e.g. injection moulding – LTPEM fuel cell applications

Bipolar-plate for HTPEM fuel cell applications

Subdomain	Governing equation(s)	Variables	
Gas channel	Navier-Stokes equations	u, v, w, P,	
	(momentum transport - laminar flow)	Pinl_chns	
	$\nabla \cdot u = 0$ $\rho \cdot u \cdot \nabla u =$ $\nabla \cdot \left(-P \cdot I + \eta \cdot \left(\nabla u + (\nabla u)^T\right)\right)$ + F	(→ weak contribution added / additional DOF)	
Porous media	Brinkman equations	same as above	
(GDL)	$\nabla \cdot u = 0$		
	$\frac{\eta}{k_p} \cdot u =$		
	$\nabla \cdot \left(-P \cdot I + \frac{1}{\varepsilon} \cdot \left(\eta \cdot \left(\nabla u + (\nabla u)^T \right) \right) - \right)$		
	$\frac{2}{3} \cdot \eta \cdot (\nabla u) \cdot I \bigg) \bigg) + F$		
	Darcy's law equation	Pd	
	$u = -\frac{k_p}{\eta} \cdot \nabla P$		

- Physical properties of air @ 160°C used (typical HTPEM fuel cell operating temperature)
- GLS streamline diffusion (free flow) / crosswind diffusion $C_k = 0.1$

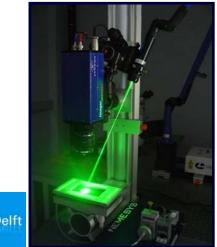
Governing equations – boundary conditions

Boundary	Governing equation(s)	Experimental data
Inlet	Constant laminar inflow	Volume per time unit
	$L_e \cdot \nabla_t \cdot \left(P \cdot I - \eta \cdot \left(\nabla_t u + (\nabla_t u)^T \right) \right) = -\vec{n} \cdot P_{0,e}$	1000 [ml/min]
	$\nabla_t u = 0$	(MFC)
Outlet	Pressure (no viscous stress)	No back pressure
	$\eta \cdot \left(\nabla_t u + (\nabla_t u)^T \right) \cdot \vec{n} = 0$ $P = P_{0,out}$	(pressure loss measured)
Walls	No slip	n.a.
	u = 0	
Gas channel to porous	Continuity \rightarrow Navier-Stokes/Brinkman	n.a.
media interface	$n \cdot \left(\eta_1 \cdot \left(\nabla u_1 + (\nabla u_1)^T \right) - p_1 \cdot I - \eta_2 \cdot \left(\nabla u_2 + (\nabla u_2)^T \right) + p_2 \cdot I \right) = 0$	
	Navier-Stokes/Darcy	
	Pressure and velocity constraints	
	P, u_chdl, v_chdl, w_chdl	

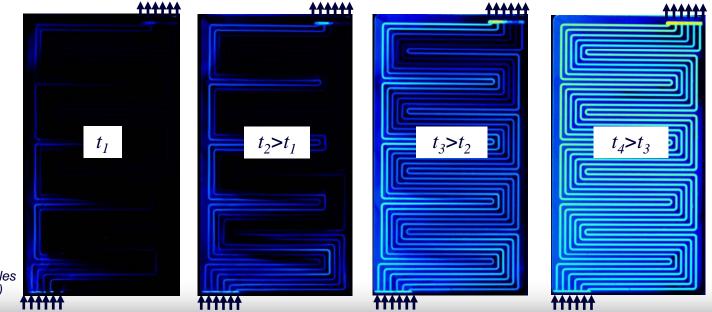
Solver settings/meshing/solution procedure

COMSOL MP 3.5a / 8 core HP workstation (Windows XP 64 bit – 64GB Ram)

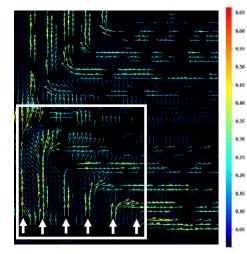
- 1) Iterative solver or 2) Parametric iterative solver \rightarrow fluid viscosity η
 - BiCGStab (linear system solver)
 - Preconditioner: Geometric multigrid solver (3 levels) V-cycle
 - Pre-/postsmoother: Vanka (pressure update) GMRES solver
 - PARDISO coarse direct solver
 - \rightarrow Convergence criteria 1.10⁻⁶ [-]
- Maximum element size 0.8.10⁻³ [-] (mesh case 0)
- Triangular elements on boundaries \rightarrow Prism elements for subdomain meshing
- 3 elements layer (gas channel and porous media subdomain)

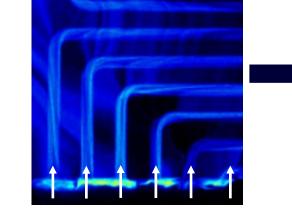

- \rightarrow All simulations performed using the same
- i) geometrical aspects
- ii) HTPEM fuel cell operating conditions and material properties

Reference case computational mesh (mesh case 0 for multigrid solver - 3 levels)

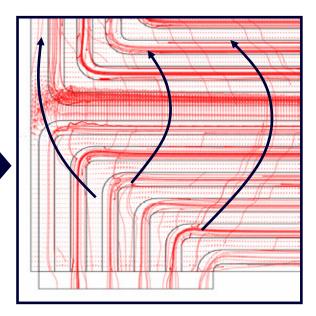

Experimental set-up:

- Experimental fluid-flow data obtained by particle image velocimetry (PIV)
- 12-bit CCD camera
- Fluorescence filter
- Dual-pulse Nd:YAG laser
- Transparent HTPEM fuel cell
- \rightarrow Water model conditions
- \rightarrow Dimensional analysis using the Reynold's number


Experimental set-up

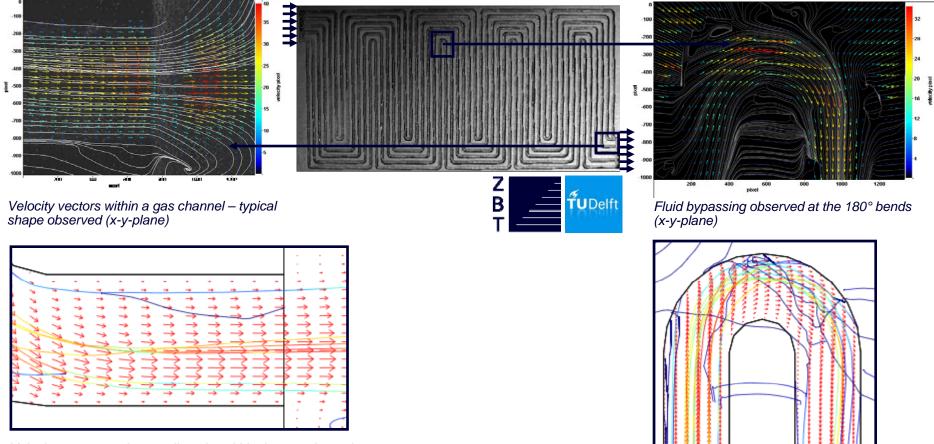

Snapshots at different times scales – PIV-measurements (x-y-plane)

Experimental/simulation results (reference case)


 \rightarrow Quantitative comparison to CFD simulation results

Velocity vectors – PIV-measurements (x-y-plane)

Fluid bypassing between adjacent channels – PIV-measurements (x-y-plane)

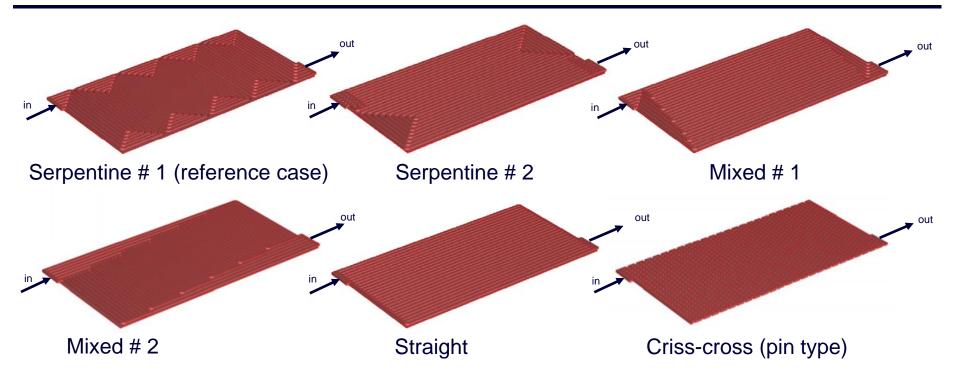


Velocity vectors and gas bypassing between adjacent channels – simulation results (arrow plot @ x-y-plane, $z = -170 \cdot 10^{-6}$ [m])

 \rightarrow same shape of the bypassing flow observed in the simulations

Experimental/simulation results (reference case)

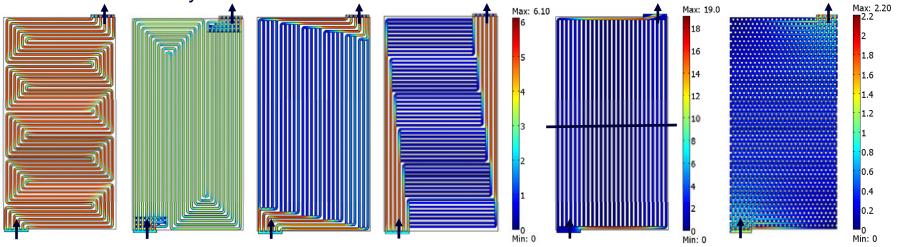
\rightarrow e.g. Preliminary experimental PIV-investigations



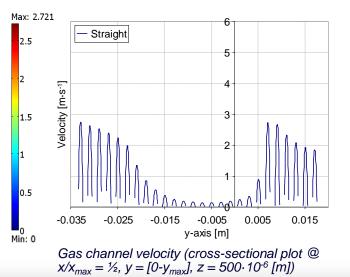
Velocity vectors and streamline plot within the gas channel (arrow plot @ x-y-plane, $z = -170 \cdot 10-6$ [m])

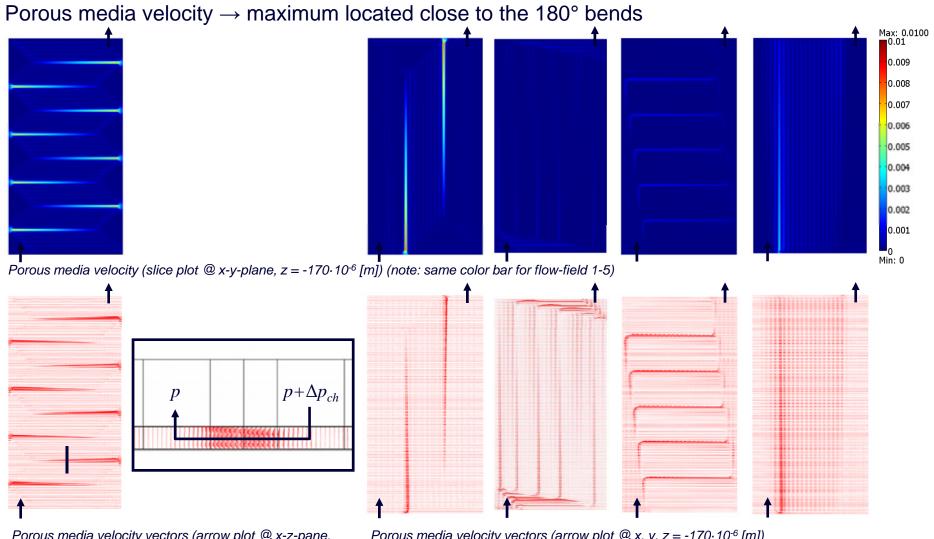
 \rightarrow quantitatively similar fluid-flow behaviour observed

Velocity vectors and streamline plot within the gas channel close to a 180° bend (arrow plot @ x-y-plane, $z = -170 \cdot 10^{-6}$ [m])

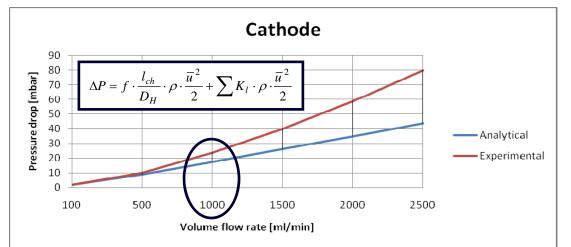


Туре	Channel/land [mm/mm]	Contact area [%/%]	Mesh elements [-]	DOF [-]
Serpentine # 1	1/1	52.3/47.7	137,898	2,075,382
Serpentine # 2	1/0.9	52.6/47.4	126,972	1,914,108
Mixed # 1	1/1	50.6/49.4	121,233	1,829,532
Mixed # 2	1/1	54.1/45.9	121,257	1,828,349
Straight	1/1	50.7/49.3	113,187	1,705,113
Criss-cross (pin type)	n.a.	73.5/26.5	58,988	1,055,744

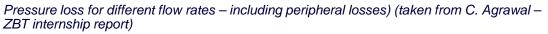

Gas channel velocity

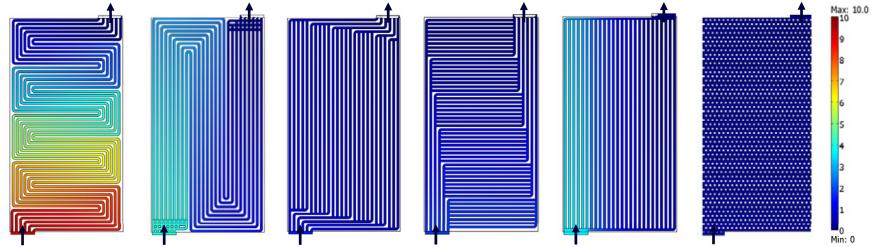

Gas channel velocity (slice plot @ x-y-plane, $z = 500 \cdot 10^{-6}$ [m]) (note: same color bar for flow-field 1-4)

- Uniform gas channel velocity observed for both serpentine type flow-fields
- Straight flow-field shows inherent maldistribution
- Criss-cross type flow-field shows low overall velocity



Porous media velocity vectors (arrow plot @ x-z-pane, $y = -170 \cdot 10^{-6}$ [m] – left, arrow plot @ x-z-pane, $y/y_{max} =$ $\frac{1}{2}$ - right)


Porous media velocity vectors (arrow plot @ x, y, $z = -170 \cdot 10^{-6} [m]$)


Experimental/simulation results

Pressure loss measured using differential pressure transmitters

HTEPM fuel cell operated using a LabView controlled teststand

Pressure loss (slice plot @ x-y-plane, $z = 500 \cdot 10^{-6}$ [m]) (note: same color bar for flow-field 1-6)

Conclusion:

- \rightarrow PIV-measurements / CFD modeling and simulation / analytical calculations
- \rightarrow to be used for flow-field layout and optimization (quantitative comparison is possible)
- \rightarrow Free flow, porous media flow and pressure loss compared for 6 types of flow-fields
- \rightarrow Gas channel bypassing highlighted

Туре	u _{ch} [m/s]	u _{GDL} [m/s]	ΔP [mbar]	Re [-]
Serpentine # 1	2.667	4.66·10 ⁻⁴	9.36	72.3
Serpentine # 2	1.778	2.88·10 ⁻⁴	4.5	46.8
Mixed # 1	0.866	8.79·10 ⁻⁵	1.48	21.1
Mixed # 2	0.799	9.67·10 ⁻⁵	1.88	23.9
Straight	0.849	2.75·10 ⁻⁴	3.58	23.7
Criss-cross (pin type)	0.232	n.a.	0.4	15.4

Outlook:

- Include multiphysics into the model (flow-field layout is more than just momentum transport!)
- Investigate for current density and temperature distribution (both theoretical/experimental)
- Analyze porous media flow and gas channel bypassing for HTPEM fuel cells
- In-, outlet positioning

Thank you very much!

Questions?