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Abstract: superconductors have the unique 

capability of trapping magnetic flux. This feature 

has the potential to enable and improve several 

applications including high power density 

rotating machines. Current material used as 

trapped flux magnets (TFM) is single domain 

YBCO that present numerous limitations in 

terms of performance, stability and size. One 

way to overcome the limitations is to use thin 

layers of YBCO deposited on disks and stack 

them. Multi-layer trapped flux magnets were 

successfully modeled and analyzed using 

COMSOL MultiPhysics through coupled 

electromagnetic and thermal transient 

simulations. Simulations allow for a better 

understanding of how the current redistributes 

during thermal disturbances and validate the 

potential of the technology. 
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1. Introduction 
 

Trapped Flux Magnets (TFM) are very 

attractive for application to power devices. The 

major limitation of flux trapping capabilities of 

bulk YBCO stems from mechanical problems. 

Indeed, Lorenz forces can become very 

important when stored magnetic energy 

increases. As most of the stress is applied locally 

on pinning centers in the material, a failure 

usually results in destruction of the material 

structure. In order to improve flux trapping 

capability in TFMs, mechanical reinforcement 

can be done using epoxy impregnated fiber glass 

cloth and a record of 17 T trapped at 29 K was 

achieved. However, due to the ceramic nature of 

YBCO, it remains structurally weak and can very 

likely fail if electro-thermal instabilities occur. 

We have studied the feasibility of TFMs based 

on multi-layer configurations that could be 

achieved by stacking disks made of coated 

conductors. The multi-layer configuration would 

bring a much better stress distribution and should 

lead to more stable flux trapping. Even though 

packing factor remains an issue for stacked 

coated conductors, it is expected that YBCO can 

be deposited advantageously in multiple layer 

configuration specifically developed for this 

specific application. The paper presents a FEA 

electromagnetic-thermal analysis of flux trapping 

in YBCO multi-layers plates using COMSOL 

MultiPhysics. 

 

2. Flux trapping in superconductors 
 

Because of their unique properties, 

superconductors can trap magnetic flux and act 

as “permanent” magnets. The phenomenon can 

be explained by the critical state model in which 

current density can only be ±Jc or 0. Since 

magnetization of superconductors is hysteretic in 

nature, the magnetic state of the material 

depends of the temperature and external field 

history.  

 

2.2 Flux trapping methods 

 

Several methods to trap magnetic flux in a 

superconductor can be used. Their effectiveness 

and practicality differ from one method to 

another. 

• Field cooling 

 

Field cooling consists of a cool down of the 

superconductor under applied field. This method 

is very effective but requires a large magnet 

generating at least the value of flux density 

desired in the superconductor.  

 

• Zero field cooling 

 

If zero-field cooling is performed, the 

superconducting material will first react by 

shielding flux variation and will expel magnetic 

flux from its volume. The method then requires 

full saturation in current and necessitates large 

magnets providing at twice the value of flux 

density desired in the superconductor.  

 

• Pulsed magnetization 

 

Pulse magnetization is identical in principle to 

zero field cooling, however, because the flux 

variation is very fast, the superconductor can 

enter a flux flow regime and generate losses 
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Figure 3. E(I) characteristic of superconductors 

 

The critical current density of YBCO is 

depending on the temperature and on the applied 

magnetic flux density. It can be parameterized as 

follows: 
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The parameters Jc(0 T, 0 K), Tc and Tb can be 

obtained experimentally. Current flows in the a-b 

plane of the material and current density in the c-

axis of the material is negligible. 

 

5. Multilayer configuration 
 

YBCO can be deposited in thin films and turned 

into tapes. YBCO is the basis for second 

generation conductors or coated conductors and 

can be deposited on large areas. Up to 10 

centimeter wide ribbons are currently 

manufactured and cut into 4 mm wide tapes to 

make conductors. Disks coated with YBCO film 

can be manufactured and stacked to form 

cylinders. The electrical properties would then be 

strongly anisotropic as current is allowed to flow 

only in parallel planes (a-b planes) and no 

current is flowing between layers. YBCO is 

deposited on substrate and the filling factor of a 

stack is a lot less than 50 %. However, current 

density in YBCO films or thin layers is orders of 

magnitude larger than in large block and 

therefore compensate for the low filling factor. 

Such a configuration brings numerous 

advantages: 

• Material can be bent 

• Intrinsically mechanically reinforced 

• Improved flux pinning 

• Larger systems can be built 

 

 
Figure 3. YBCO conductor from American 

Superconductor Inc. [4] 

 

Commercially available wide conductors can be used, 

however, the stabilization layers necessary for stable 

conductor operation are not requires in TFM and a 

higher filling factor can be achieved with a dedicated 

configuration. 

 

6. Problem definition 

 
6.1 Geometry 

 

The system is modeled in 2D with axial 

symmetry, which is a valid approximation for the 

system of interest since YBCO can be deposited 

uniformly. The geometry implemented in 

COMSOL is shown in figure 4. 

 
Figure 4. Geometry implemented in Comsol 

 

The system is modeled with homogeneous YBCO 

layers 0.15 mm thick and separated by 0.1 mm layers 

of resin insulation.  

 

6.2 Material properties 

 

• YBCO 

 

YBCO exhibits non-linear electrical and thermal 

properties. In COMSOL, conductors are 

modeled with their electrical conductivity, based 
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on equation (3), the conductivity of YBCO can 

be expressed as follows. 
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Where Tc is the critical temperature, Jc0 is the 

value of the critical current density at 0 K and 0 

T,  Ec is the electrical field magnitude defining 

Jc, B0 and n are determined experimentally.  

The electrical field E is a parameter of the 

electrical conductivity which would pose a 

problem in most FEA package but COMSOL 

allows for this dependence to be modeled. 

 

Specific heat and thermal conductivity of YBCO 

are plotted as a function of temperature in figure 

5. 

 

 
Figure 5. Thermal properties of YBCO 

 

• Resin 

 

 G10 resin is used to hold the YBCO layers 

together. Its thermal properties are shown in 

figure 6. 

 

 
Figure 6. Thermal properties of G10 resin 

 

6.3 Mesh, Sources and boundary conditions 

 

The mesh, represented in figure 7, is composed 

of about 80,000 elements leading to a system 

with over 300,000 degrees of freedom. The mesh 

is kept coarse in the surrounding air and in the 

field coil. 

 

 
Figure 7. Mesh in the multi-layer component 

 

The thermal simulation only considers the 

YBCO, resin and heater. A heat exchange 

condition is set on the resin simulating cooling. 

The heat pulse applied to the heater is shown in 

figure 8. 

 

 
Figure 8. Heat pulse. 

 

The field coil generates a flux density on the 

TFM which is ramping down linearly from 5 T 

to 0 T. 

 

7. Simulation sequence 
 

Since field cooling requires full field penetration 

before the YBCO becomes superconducting, the 

initial condition corresponding to this state needs 

to be computed first. When a superconductor is 

cooled down under field, part of the magnetic 

flux is expelled from its volume; if the applied 

field is below Hc1, which is of a few mT, then the 
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material is diamagnetic (Meissner effect), if the 

applied field is greater than Hc1, then the 

material is in the mixed state and normal zones 

are developed allowing quanta of flux to go 

through the material. In the case presented, the 

material is in the mixed state and the resulting 

partial diamagnetism which is typically of a few 

percents is neglected. The simulation sequence is 

the following: 

1. Initial state (steady state): maximum 

external field applied, T=85 K 

2. Transient analysis part 1: external field 

ramped down, no external heat source 

3. Transient analysis part 2: no applied 

field, apply pulse of heat 

 

8. Simulation Results 
 

Once the flux is trapped, the TFM is excited with 

a heat pulse. This thermal disturbance can lead to 

a decrease of the trapped flux or a complete 

demagnetization of the material. A critical value 

for the heat pulse leading to non-stable behavior 

can be determined. This relates to the minimum 

quench energy (MQE) for quench studies which 

is the minimum amount of energy leading to 

instability of the material. The two cases are 

described in this section. 

 

8.1 Current penetration 

  

As predicted by the critical state model, the 

current induced by a decreasing magnetic flux 

penetrates from the side in the material. Since all 

the layers are magnetically coupled, the stack 

behaves as a single block of YBCO. The 

magnitude of the current density strongly 

depends on the applied flux density leading to a 

lower current value in the central part of the 

TFM.  

In table 2: 

1- The applied field ramp-down starts, 

current penetrates in the superconductor 

2- As the field keeps decreasing, current 

penetration increases, current density is 

already lowered in the center of the 

TFM 

3- All the field is generated by the TFM 

 

The current can penetrate until the material is 

fully saturated for larger applied field values. 

 

 

Table 2: current penetration in the TFM 

1 

 
2 

 
3 

 
 

 

8.2 Stable behavior 

 

A heat pulse of 18 J is applied to the TFM once 

the field coil is completely ramped down. As 

shown in following table, the current in the 

layers closer to the heater heat up, thus becoming 

dissipative. The heat exchange is high enough to 

maintain the top layers in the superconducting 

state; the trapped flux is nearly unchanged. 

Indeed, when the current in the bottom layer is 

dissipated, the associated flux variation is 

compensated by a redistribution of the current in 

the top layers; the current penetrates deeper in 

the material. In table 3: 

1- Current starts penetrating in the material 

2- Magnetic flux is trapped 

3- Heat pulse is generated decreasing 

current magnitude in the lower layers 

4- After current redistributes to keep flux 

variation to a minimum 
 

 

 



Table 3: stable behavior – Color represents current 

density and lines the flux lines. 
 

1 

 
2 

 
3 

 
4 

 
 

Figure 9 shows the flux distribution on the top of 

the TFM during the first 10 s. The initial 

distribution is the uniform field generated by the 

field coil. The end of the simulation shows the 

field trapped in the superconductor. 

 

 
Figure 9. flux distribution on top of the TFM 

 

During flux trapping, magnetic flux is changing 

in the area where current is flowing. Any change 

of flux creates an electrical field as predicted by 

Faraday’s law of induction. The simultaneous 

presence of electrical field and current density 

creates losses. Such losses can be calculated by 

integrating J×E over the volume of 

superconductor. The instantaneous power, shown 

in figure 10, peaks at 0.5 mW and leads to a 0.2 

mJ of dissipated energy in the material, which in 

this case is negligible. However, for faster flux 

variation, these losses can become significant. 

 

 
Figure 10. Heat dissipated in the superconductor 

 

8.3 Unstable behavior 

 

In some cases, an avalanche phenomenon can 

occur destroying the magnetization of the 

material. This can happen for large energy 

deposition such as heat pulse and/or weak 



cooling. In the presented simulation, the heat 

pulse was increased by 20 % leading to 

instability. The following table shows the 

simulation results. 

 
Table 4: unstable behavior – Color represents current 

density and lines the flux lines. 

1 

 
2 

 
3 

 
 

In table 4: 

1- No external field. The flux is trapped 

and the heat pulse starts 

2- Current redistributes and penetrates 

deeper in the material 

3- An avalanche phenomenon dissipates 

all the stored energy 

4-  

The magnitude of the flux density at the center 

top of the TFM is shown in figure 11. The entire 

trapped field disappears at the beginning of the 

pulse, evidence of the instability. Figure 12 

shows the energy dissipated in the 

superconductor. A peak of 0.25 W appears at the 

beginning of the pulse releasing the stored 

energy. 

 
Figure 11. Flux distribution the center top of the TFM 

 

 
Figure 12. Heat dissipated in the superconductor 

 

9. Conclusion 

 
Multi-layer trapped flux magnets present a very 

interesting alternative to bulk blocks of ceramic 

YBCO. A model was developed to investigate 

their stability against thermal disturbances. 

Modeling superconducting material is not trivial 

because of the strong non-linearity of the 

electrical conductivity. COMSOL allows for a 

better understanding of the behavior of trapped 

flux magnet through successful coupled 

electromagnetic and thermal simulations. 
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