

Level set based Topology Optimisation of Convectively Cooled Heat Sinks

Mani S Santhanakrishnan, Timothy Tilford & Chris Bailey

Computational Mechanics and Reliability Group, University of Greenwich, London, UK

October 2017, Rotterdam, the Netherlands

Contents

- Introduction to Topology Optimisation
- Level Set Topology Optimisation (LS TO)
- Numerical Implementation
- Problem Description- Heat sink design
- Heat sink Results
 - 2D High conductivity solid
 - 2D Low conductivity solid
 - 2D Flow with minimum Viscous dissipation
 - Combined Thermal Compliance & Viscous Dissipation
 - 3D High conductivity solid
- Conclusions

Introduction to Topology Optimisation

- Topology optimisation is a mathematical approach that **optimises material layout** for a given **set of constraints** meeting prescribed set of performance **objectives**.
- Concept is started for structural mechanics problems (by Bendsoe & Kikuchi) but now it finds application in Fluids, Acoustics, Electromagnetics, Optics etc.
- □ There are different methods for Topology optimisation they are,
 - Density Method
 - Level set methods
 - Topological derivative
 - Phase field method and
 - Evolutionary approaches.

Introduction to Topology Optimisation

Cantilever Subjected to Tip Load

4

Ref:O Sigmund, A 99 line Topology optimisation code written in Matlab, Struc & Multidisc Optim 2001

TO with the Level-set method

- Level set method is a concept developed for studying moving boundaries
- Major steps in Level-set TO
 - LSF parametrization (Polynomial shape function or Radial Basis function)
 - Mapping of geometry into mechanical model, Ersatz material, XFEM, Conforming mesh
 - Optimization strategy (Hamilton Jacobi solver or Mathematical programming)

TO with the Level-set method

Advantages

- Accurate prediction of interphases
- No pressure diffusion in fluid flow problems (in XFEM & Conformal Mapping)
- Compared to Density method convergence of Level-set method is slow

Optimised Shape

Level Set TO - Numerical Implementation

7

Re-initialisation of Level sets

Level Set after few TO iterations, before Re-initialisation

Eikonal Equation $\frac{\partial \psi}{\partial t} + w. \nabla \psi = S(\psi o)$ $w = S(\psi o) \frac{\nabla \psi}{|\nabla \psi|}$ where S is smoothed sign function

Level Set after Re-initialisation

Heat sink Design: Problem Formulation

9

Objective: Thermal Compliance: $\min \int_{\Omega} kgam * [(\nabla T)^2] d\Omega$

Viscous Dissipation: $\min \mu \int_{\Omega} \left(\frac{\partial u_i}{\partial x_i}\right)^2 d\Omega$

Governing Eqns:

 $\rho C p(u. T) = \nabla (k \nabla T) + Q$

 $(\nabla \cdot \mathcal{A}) = 0$

$$(u. \ u) = -\nabla p + . \{\mu\{\nabla u + (\nabla u)^T\}\} - \alpha u$$
$$H(\Psi)u = 0$$

?

Variable	Expression
Kgam	$(K_s - K_f) * H + K_f$
Cpgam	$(Cp_s - Cp_f)^*H + Cp_f$
ρgam	$(\rho_s\text{-}~\rho_f)^*H+\rho_f$
α	$(\alpha max-\alpha min)^*H + \alpha min$

Material: k_f/k_s =0.001 High conductivity solid k_f/k_s =0.1 Low conductivity solid

Heat flux =700W/m2

Reynolds number=600

Constraints: 40% volume constraint for solid material

High conductivity solid- Results

10

Iteration = 67 Area Difference= 2.4384e-05 Thermal Compliance= 202.51 Max Temperature=523.10K 80

- Heat sink has tree like/Dendritic shape
- Temperature is uniformly distributed throughout the design domain

Low conductivity solid- Results

11

628.4 621.9

615.4

609.0 602.5

596.1

589.6

583.2

576.7 570.2

563.8

557.3

550.9

544.4

537.9 531.5 525.0

518.6 512.1 502.4

Area Difference= 6.5897e-07 Thermal Compliance= 3154.40 MaxTemperature=631.59 K

Secondary branches have disappeared for low conductivity solid

0.4

0.2

Minimum Viscous Dissipation - Results

12

• Viscous Dissipation objective leads to a shape guiding the flow with least resistance

Combined Thermal Compliance and Viscous Dissipation

	Thermal				
	Compliance		Viscous Dissipation		
(F1,F2)	(WK/m)		(N/s)		
(0, 1)	14197.6		7.9642e-8		
(1e-9,1)	2357.1	,	8.8307e-8		

 Combined objective, tries to minimize both Thermal Compliance & Viscous Dissipation.

Three dimensional Heat sink design

Computational Domain

- Design domain of size 0.1x0.1x0.1m is discretised with 43x43x43 hexahedral cells
- Material: K_f/K_s=0.001 (High conductivity solid)
- Heat flux=1000W/m²
- Re=8 (vel=4e-5m/s)

Objective: Minimizing the thermal compliance

Constraints: 25% volume constraint for solid material

Three Dimensional High conductivity solid - Results

- Tree like structure with primary branches starting from heat source reaching to corners of the domain.
- Use of symmetry condition & Global optimality of the shape needs to be verified

Conclusions

- Implemented Level set based Topology optimisation methodology with Re-initialisation in Comsol 5.2 using MATLAB Livelink[®] feature
- Demonstrated the application of this methodology for Heat sink designs for different objectives
- Heat sink for thermal compliance objective leads to Dendritic shape whereas for Viscous dissipation objective leads to solid shape guiding the flow with least resistance
- Three Dimensional Heat sink also designed for minimum Thermal Compliance Objective.
- Further research is needed to ensure the global optimality of the obtained shapes

Thank You

- **Email: m.santhanakrishnan@greenwich.ac.uk**
- Web: cmrg.cms.gre.ac.uk

Funded through University of Greenwich Vice Chancellor's Scholarship scheme

Additional slides

Results Comparison

Re	Pr of fluid	Kf/Ks	Heatflux	Coupled Level Set	SIMP	Re-initialized LS
60	105	0.001	700	29.5 ★	43.7 (g=0.2)	202.506 ★
				Т=509К	510K	523.1K
60	105 0.1 700	2687	2569 (g=0.7)	3154.4		
				Т=606К	Temp:618K	631.59K

	SIMP TO	Coupled LS	Re- initialised LS
Thermal compliance (kgm ² K/s ³)	6.518	2.05	8.2257
Maximum Temperature (K)	383.9	378.58	412.52

- Coupled LS results show lower objective value than re-initialised LS due to presence of grey cells.
- CFD study on optimal shapes are required to validate the results

Results with Symmetry Boundary condition

Low Reynolds number Duct flow

- Initial Values: if(H<1,0[m/s], v1) & Additional ' leaked Wall' condn with No surfaces selected. (Leaked wall condn not necessary; *Lsnoleakwall.mph)
- Setting this initial value imposes noslip on solid walls
- Also corrected the force (alpha) term

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

0.22 f

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

0

-0.12

0

0

Thermal Compliance

0.35 .0.02

Level Set TO - Numerical Implementation

24