

Silicon-Organic-Hybrid Independent, Simultaneous Dual-Polarization Modulator: Device Theory and Design

Y. D'Mello^{*1}, M. Hui¹, J. Skoric¹, M. Haines¹, A. Kirk¹, M. Andrews², D. Plant¹

1. Department of Electrical and Computer Engineering, McGill University, Montreal, Canada

2. Department of Chemistry, McGill University, Montreal, Canada

*Yannick.DMello@mail.McGill.ca

Outline

Introduction

TelecommunicationsModulatorsPockels Effect

Concept

Electro-Optic PolymersThermal PolingDual Polarization

Simulation Setup Modules & Constraints Electric field: Electrodes Mode Confinement

Results

- Phase Change:
 - Interaction Length
 - Applied electric field
 - Dual modulation

Future Work

Telecommunication

- Generating 1's and 0's
- Signal Processing
 - Nyquist: $f_{carrier} = 2f_{signal}$
 - Shannon:
 - Send-transmit-receive
 - Chip-AON-chip
- Always a need for higher bandwidth & speed

https://www.osaopn.org/opn/media/Images/Articles/2015/1503/Features/Winz er-img2.jpg?width=1200

Modulators

https://www.edgefx.in/wp-content/uploads/2014/09/9-27-2014-12-30-50-PM.jpg

- Occupy the largest area on a nanophotonic chip
- Analog Modulation techniques
 - Amplitude
 - Frequency
 - Phase

Pockels Effect

Anatomy of the Pockels Cell

Electrode

Electrode

Figure 5

Output

Wave

- 2nd order nonlinear optic effect $\vec{P} = \vec{P}_0 + \varepsilon_0 (\chi^{(1)}\vec{E} + \chi^{(2)}\vec{E}:\vec{E} + \chi^{(3)}\vec{E}:\vec{E}:\vec{E} + \cdots)$
 - 1st order linear electro-optic effect $n_d = n_{co} - \frac{1}{2}n_{co}^3 r_{ij}E_d$
 - Change in $n \rightarrow$ phase shift

• Affected by Second Harmonic Generation

Polarized

Input Wave

Anisotropic Crystal

6

Electro-Optic Polymers

- Smart material: guest-host matrix
- Chromophores related to color
- Delocalized π-bonds asymmetrically oriented to create a dipole effect
- Applied E-field affects polarization
- Orientation can be manipulated to produce phase modulation

$$\begin{split} \vec{P} &= \vec{P}_0 + \varepsilon_0 \left(\chi^{(1)} \vec{E} + \chi^{(2)} \vec{E} : \vec{E} + \chi^{(3)} \vec{E} : \vec{E} : \vec{E} + \cdots \right) \\ \vec{M}(\vec{E}) &= \vec{M}(0) + \hat{\alpha} \vec{E} + \hat{\beta} \vec{E} : \vec{E} + \hat{\hat{\gamma}} \vec{E} : \vec{E} : \vec{E} + \cdots \end{split}$$

Thermal Poling

- Heat to T_g
- Annealing under electric field
- EOP is isotropic until poled

Thermal Poling

- EOP is isotropic until poled
- Poling methods
 - Corona or Electrode
- Typical modulators are poled opposite to E-signal

Dual Polarization

• Typical modulators interact with one polarization on-axis

http://www.olympusmicro.com/primer/java/pockelscell/pockelscelljavafigure1.jpg

t_{ex}

Dual Polarization

- Typical modulators interact with one polarization on-axis
- Possible to interact with orthogonal dimensions through the use of the third dimension as a degree of freedom

Lev.

Electrode (Electric Field)

Confinement in a Single-Mode Fiber

Modules & Constraints

- Electromagnetic Waves, Beam Envelopes (ewbe)
 - Define linear electro-optic effect (Pockels effect)
 - Scattering Boundary Condition: Decaying field beyond sim domain
 - Port 1: User Defined, for 45° polarized wave input
 - Matched boundary condition: Output
- Electrostatics (es)
 - Electric Potential 1 & 2: Apply top and side potential
 - Ground: Set uniform ground

Phase Change: Length

- Cut line 3D
- $\Delta \phi \propto L_{interaction}$
- Sinusoidal over longer interaction lengths
- Phase response can be increased with:
 - Pockels coefficient
 - Mode field overlap
 - Voltage

Phase Change: Applied Electric Field

- Parametric sweep
- $\Delta \phi \propto V_{modulation}$
- Sinusoidal over larger voltages
- Phase response can be increased with:
 - Pockels coefficient
 - Mode field overlap
 - Interaction length

Phase Change: Dual Modulation

Future Work

- Temperature dependence polymers
- ES module: thermal poling
- RF module: high frequency modulation
- Characterization of EOPs
- COMSOL voltage dependence stress simulation
- Decreasing footprint of device
- Fabrication techniques
- Boundary Element Method

Acknowledgements

- Michael Hui & James Skoric
- Matt Haines
- Prof. David Plant (supervisor)
- Prof. Mark Andrews and Prof. Andrew Kirk
- Plant & Andrews research groups

Thank You

Yannick.DMello@mail.McGill.ca

For more information, visit our poster!

Testing DP-EOPM

- Reduce cladding radius
- Cladding Radius: $10 \mu m$
 - Original: 20µm
- Waveguide Length: $20 \mu m$
 - Original: 8000μm

SOH Dual-Polarization Modulator

- Further reduce cladding radius
- Cladding Radius: $5\mu m$
 - Original: $20\mu m$
 - Study #1: 10µm
- Waveguide Length: $20 \mu m$
 - Original: $8000 \mu m$

- Increasing modulation Voltage
- Voltage: 30V
 - Original: 10V
- Cladding Radius: $5\mu m$
 - Original: $20\mu m$
 - Study #1: 10 μm
- Waveguide Length: $20 \mu m$
 - Original: $8000 \mu m$

- Single-Mode
- Voltage: 10V
- Cladding Radius: $5\mu m$
 - Original: $20\mu m$
- Core Radius: $0.8 \mu m$
 - Original: $2\mu m$
- Waveguide Length: $20 \mu m$
 - Original: $8000 \mu m$

- Single-Mode
- Voltage: 20V
 - Original: 10V
- Cladding Radius: $5\mu m$
 - Original: $20\mu m$
- Core Radius: $0.8 \mu m$
 - Original: $2\mu m$
- Waveguide Length: $20 \mu m$
 - Original: 8000µm

