

Liquid Microlens with Adjustable Focusing and Beam Steering for Single Cell Optogenetics

Shaun Berry

MEMS and Nanotechnology 2

5 October 2017

Motivation and Program Goal

Optogenetics

 Electrical activity in neurons stimulated by light

Synthetic Neurobiology Group – Prof. Boyden (MIT)

One of the technology challenges is delivering light down into the brain and enabling single cell resolution

Develop an implantable optical probe with integrated focusing and steering optics

- Initial work on developing an active focusing and steering optical element
 - Focal range: 0.1 1 mm
 - Ability to steer over ±5°
 - Focus light to spot ≤10 μm

Development of Active Optofluidic Device

 Integrating focus and steering into single micron-scale liquid lens

- Liquid lens formed by interface between two immiscible liquids
- Electrical control of meniscus shape (Electrowetting)
- Focus results from different refractive indexes (n_{oil} > n_{water})
- Beam steering resulting from conical taper etched into fused silica substrate
 - Quadrupole electrode arrangement along taper wall
 - Geometry allows for the liquid interface to tilt

Design provides both focusing and steering in a single optical element

Liquid Lens Interface Physics

Equilibrium drop shape:

- Young's eq.
$$\sigma_{wo} \cos \theta^0 = \sigma_{sw} - \sigma_{so}$$

- In-plane radius of curvature
 - $R \to f(\theta, \sigma_{wo})$
- Electrowetting:
 - Wetting properties at the liquid/solid interface modified from an applied electrical field

$$\sigma_{sw}(V) = \sigma_{sw_1} - \frac{1}{2}CV^2$$

- Goal is to determine R as f(V)
- Use Numerical simulations to solve:
 - Equilibrium shape of the liquid interface profile
 - function of voltage and lens cavity geometry

Equilibrium

Electrowetting actuation

Electrowetting Equation

$$\theta(V) = \cos^{-1} \left[\cos \theta^0 - \frac{CV^2}{2\sigma_{wo}} \right]$$

C= capacitance per unit area V = voltage

COMSOL Numerical Model

Physics:

- 2D-Fluid Flow-Multiphase-Laminar two-phase flow-Level set
 - · Fixed mesh method
 - Interface tracked w/additional transport equation

Geometry defined by:

- D_{ca} : clear aperture diameter
- $-\alpha$: taper angle
- h: taper cavity height

Two geometric domains

- Domain 1
 - · Assigned properties for water
 - Level-set function $\phi = 0$
- Domain 2
 - Assigned properties for oil
 - Level-set function $\phi = 1$

Boundary conditions

- No-slip wall
 - for all exterior walls except walls that form taper cavity
- Define $\theta(V)$ at taper walls

Dielectric material properties

Solid	3	t (nm)
SiO ₂	3.9	500
Hydrophobic film	2.1	85

Simulation Results for Uniform Voltages

Model parameters

$$- D_{ca} = 32 \mu m$$

$$-\alpha = 45^{\circ}$$

$$- h = 15 \mu m$$

•
$$V_L = V_R$$

$$-\theta^{\circ} = 23^{\circ}$$

$$-\sigma_{wo}$$
 = 45 mN/m

Results:

- Contour plots for volume-offraction data, vof = 0.5
- Liquid interface is concaved at 0 V
 - Liquid lens has negative optical power
- Liquid interface becomes convex (positive) at ~18 V
- Working voltage range from 18 to 40 V

Comparing Different Lens Cavity Geometries

- Liquid interface convex at 0 V for 15° taper design
 - Lens will have always positive optical power

Taper Angle α	Voltage for Positive Optical Power	Voltage Dynamic Range (ΔV)
15	0	40
45	18	22
75	34	6

When $\alpha \le \theta^{\circ}$ liquid lens will always be a focusing element

Determine Focus vs. Voltage

- R(V) determined from volume of fraction data (vof)
- Focal length calculated using Lens Maker Eq.

$$\frac{1}{f} = \frac{n_o - n_w}{n_w} \left(\frac{1}{R(V)}\right)$$

- Parameters for tuning focus length:
 - Lens geometry
 - Liquids (index of refraction)
 - Voltage (electrowetting effect)

Focus vs. Voltage

Beam Steering

 Appling different voltages to each side wall results in liquid interface tilting

Focus and steering map for:

D_{ca}: 32 μm
α: 15°
h: 15 μm

 2.7° steering angle translates to ~24 μm focal spot shift

Experimental vs. Simulation

Microscope Image after Metal Electrode Patterning

SEM after Metal Electrode Patterning

- Using Lincoln's state-of-art fabrication facilities
 - Fabricated 45° tapered liquid microlenses*
 - Novel grayscale lithography process developed
- Developed optical measurement techniques for small aperture lenses

Summary

- This work has led to the successful demonstration of micronsized liquid lenses that combined both focusing and steering
- Developed a useful simulation tool for liquid optics and have combined it with fabrication
- Establishing an optofluidics center of excellence with capabilities:
 - Simulation (optical and fluidic)
 - Fabrication
 - Testing and evaluation

Acknowledgements

MIT Lincoln Laboratory Staff

<u>MIT</u>

Dr. Shawn Redmond

Prof. Edward Boyden

Paul Robinson

Dr. Todd Thorsen

Dr. Mordy Rothschild

Funded by NIH grant #5R01DA029639

Shaun Berry, et. al., "Fluidic microoptics with adjustable focusing and beam steering for single cell optogenetics," Opt. Express 25 (14), 16825-16839 (2017).

This material is based upon work supported by MIT under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of MIT.

Thank you

Questions?