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Compensating the Atmospheric Turbulence
The Control System Concept
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Adaptive Optics on board the Telescope
System Overview

[Riccardi et al., 2004]
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Actuating the DM & Sensing the Displacements
The LBT Voice-Coil
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Basic Requirements of High Order DM’s
The Specs are very Severe

rms force (turb. corr.) [N] .363
max force (static) [N] .36

max force (dynamic) [N] 1.27
stroke [µm] ±150

bandwidth [kHz] 1
typical actuator spacing [mm] 25

typical mover mass [g] ≤ 10
resistance [Ω] 2 to 2.5

measuring range [µm] ±100
resolution [nm] < 3
rms noise [nm] < 5

drift1 [nm] 20
bandwidth [kHz] > 30

112 hrs base, 5◦C temperature variation
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DM Stiffness vs. DM Thickness & Act Spacing
Kflex ∝ t3 × (1/d)4

What if
the inter-actuator spacing is slightly reduced
the thickness is slightly increased

HIGHER ORDER DM d = 30→ 25 mm (16%)
ELT PANELS t = 1.6→ 2 mm (20%)

}
 2×Kflex
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The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the local seeing
⇓

reduce any local heating
⇓

given the force, reduce the power
⇓

maximize the efficiency, i.e. the force-to-power ratio
(while respecting the geometry and minimizing the emc)

How getting ∆T ≤ ±1 K on any air-exposed surface?
1 implement a cooling system

active (which Tcoolant?) SAFER BUT MORE COMPLEX

2 rely on the natural convection
passive SIMPLER BUT MORE RISKY
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The Electromagnetic Core
Variable Reluctance LM: Magnetic Force =

Z
V

(M · ∇) B dV

[Del Vecchio et al., 2008]
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The Axially Symmetric Actuator
E/M and E/S Components

motor (statoric)
capsens (statoric)

motor (moving) & shaft
capsens (moving)
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The Axially Symmetric Actuator
The Other Components

static
motor capsens

moving
motor shaft capsens

membranes
top/bottom plates
body (& aux)
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From the Dwg to the Mesh
Carefully Meshing Gap & Coil Regions

2d geometry imported via the CAD Import Module

Fine mesh of coil (rwire = .1195 mm, δins = 7 µm) and air
gaps (τ = 7 µm)
As a result

≈ 55, 000 points and ≈ 100, 000 elements
.5% of which have a quality ≤ .4
minimum quality = .19
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Setting Up the Magnetostatics
Temperature Affects the Resistive Heating

F =

∫
S
−1

2
(H · B) n + (n · H) BT dS =

∫
V

(M · ∇) B dV

choose the Maxwell tensor

σCu = 1
ρCuref

[1+0.0039 (T−293)] S×m−1

ρCuref = 1.72× 10−8 Ω×m Cu resistivity @ 293 K
T ⇐ heat transfer
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Setting Up the Heat Transfer
Assumption & Restrictions

neglect the radiative contribution
∂k
∂T ≈ 0 in conductive solids
trapped air isn’t convective
convective air

ρ = M
R

p+patm
T = 3.484× 10−3 p

T [Pa] ← pV = nRT
p ⇐ weakly compressible Navier-Stokes
patm = 101325 Pa

uair ⇐ weakly compressible Navier-Stokes
boundary conditions

T = Tref @ bottom
thermal insulation @ vertical outer bnd
convective flux @ top
T = Tcoolant @ coolant channels bnd’s (if any)
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Setting Up the Weakly Compressible N-S
Assumption & Restrictions

ρ= M
R

p+patm
T =3.484×10−3 p

T [kg×m−3] ← pV = nRT
η = −7.887× 10−12 T 2 + 4.427× 10−8 T +
5.204× 10−6 [Pa× s−1]

fz = 9.81 (ρref − ρchns) [N]

ρref = ρ @ (T = Tref , p = 0)

boundary conditions
u = 0 (wall / no slip) @ air-solid interfaces
n · u = 0 . . . (wall / slip) @ vertical outer bnd
p = 0 . . . (outlet / normal stress) @ horizontal top bnd



Novel AO Act

Del Vecchio,
Biasi,

Riccardi,
Gallieni

Background
The AO Principle

The Design Drivers

The Actuator
The Multiphysics
Problem

The Model

The
Application
Modes
Magnetostatics

Heat transfer

Fluid dynamics

Results

Experimental
Validation

Summary

Magnetostatic Results I
ε > 4 N×W−1

.57 ≤ ∆TCu ≤ 3.98 K, thanks to material optimization
4.05 ≤ ε ≤ 4.1 N×W−1, thanks to geom. optimization

1 rms turb. corr. force .363 N→ .21 A
2 max dyn. force 1.27 N→ .38 A

A low-order actuator vs. the current high order actuator

LBT TEC1

force
∫

V
(J× B) dV

∫
V

(M · ∇) B dV

power @ 1.27 N [W] 4.169 .314
power @ .25 N [W] .162 .062

mov. mass [kg×10−3] 2.8 14
emc mean negligible
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Magnetostatic Results II
Shaping the Ferromagnetic Material to Focus B
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Fluid Dynamics Results I
Computing ∆T = T − Tref

2 force cases
rms turb. corr. force fc = .363 N
max dyn. force fm = 1.27 N

active
∆Tcoolant = 0 gives the lowest ∆T

force max surface ∆T
fc .10 K
fm .35 K

passive
The (rare) f = fm gives out-of-specs ∆T

force max surface ∆T
fc .64 K
fm 2.24 K
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Fluid Dynamics Results II
The Active Surface ∆T
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Fluid Dynamics Results III
The Passive Surface ∆T
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Fluid Dynamics Results IV
f = fm: the Active and Passive Air Velocities
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The Prototype
From the Simulations to the Real Life

Running the preliminary tests
The mechanics is OK
ε ≈ 1

2 of the design value (maybe a bad coil filling factor
and stator part mismatching)
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Lessons Learned & Future Work

εIron+Copper > εPM+Copper . . .
but (Cons)

larger moving mass DM dynamics may degrade
mechanical contact tighter tolerances
much larger statoric mass just higher costs

and (Pros)
low flux leakage negligible emc�� ��heat removal by natural convection

�� ��simpler design

On the way & Still to do
2d SM thermal deformations
2d Multiphysics better bnd conditions @ bottom
2d Multiphysics add Q̇ from electronics boards
3d Multiphysics actuator interaction
3d E/M & E/S tolerances run-out & tilt
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For Further Reading

For Further Reading I

Del Vecchio, C. Biasi, R. Gallieni, D. Riccardi, A. and
Spairani, R.
Actuating the Deformable Mirror: a Multiphysics Design
Approach
in B. L. Ellerbroek and D. Bonaccini Calia (eds),
Astronomical Telescopes and Instrumentation, Vol.
7015, SPIE, Marseille, France, pp. 157-167, 2008.
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For Further Reading II

Riccardi, A., Brusa, G., Xompero, M., Zanotti, D., Del
Vecchio, C., Salinari, P., Ranfagni, P., Gallieni, D., Biasi,
R., Andrighettoni, M., Miller, S. and Mantegazza, P.
The adaptive secondary mirrors for the Large Binocular
Telescope: a progress report
in D. Bonaccini Calia, B. L. Ellerbroek and R. Ragazzoni
(eds), Advancements in Adaptive Optics, Vol. 5490,
SPIE, Glasgow, UK, pp. 1564–1571, 2004.
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