Shape, Convection and Convergence

Roger W. Pryor, Ph.D., VP Research Pryor Knowledge Systems, Inc.

Roger W. Pryor, Ph.D.

We are:

• A Technical Consultation firm in business since 1993

We are:

- A Technical Consultation firm in business since 1993
- Specialists in the
 - Application of state-of-the-art technology and COMSOL Multiphysics Modeling to the solution of challenging problems
 - Application of the unique properties of materials

We are:

- A Technical Consultation firm in business since 1993
- Specialists in the
 - Application of state-of-the-art technology and COMSOL Multiphysics Modeling to the solution of challenging problems
 - Application of the unique properties of materials
- Located in Southeast Michigan

I. Why solve this particular free convection problem?

Roger W. Pryor, Ph.D.

Overview:

- I. Why solve this particular free convection problem?
- II. How does a First Principles Analysis relate to this shape dependent model?

Overview:

- I. Why solve this particular free convection problem?
- II. How does a First Principles Analysis relate to this shape dependent model?
- **III.** How was the model built and solved?

Overview:

- I. Why solve this particular free convection problem?
- II. How does a First Principles Analysis relate to this shape dependent model?
- **III.** How was the model built and solved?
- IV. What benefits are derived from applying this modeling technique?

Defining the Geometry of the Tank Top : What is the B/A Ratio?

Geometric Specifications Elliptical Tank Top : A-Semiaxis, B-Semiaxis

Roger W. Pryor, Ph.D.

I. New Shape-Dependent Convection Model

- I. New Shape-Dependent Convection Model
- II. 2D Axisymmetric Geometry

- I. New Shape-Dependent Convection Model
- **II.** 2D Axisymmetric Geometry
- III. New Model Based on examples presented in: thermos laminar hcoeff and thermos laminar flow (Heat Transfer Module Model Library (COMSOL 3.4))

- I. New Shape-Dependent Convection Model
- **II.** 2D Axisymmetric Geometry
- III. New Model Based on examples presented in: thermos laminar hcoeff and thermos laminar flow (Heat Transfer Module Model Library (COMSOL 3.4))
- IV. Shape Ratio (B/A) Varied by changes in the Elliptical Tank Top

- I. New Shape-Dependent Convection Model
- **II.** 2D Axisymmetric Geometry
- III. New Model Based on examples presented in: thermos laminar hcoeff and thermos laminar flow (Heat Transfer Module Model Library (COMSOL 3.4))
- IV. Shape Ratio (B/A) Varied by changes in the Elliptical Tank Top
- V. Shape-Dependent Model Convergence determined by both Tank Top Shape (B/A Ratio) and Modified Solver Parameters

First Principles Applied to Fluid Flow

I. Calculation of fluid flow behavior is a complex and mathematically difficult area to model.

First Principles Applied to Fluid Flow

- I. Calculation of fluid flow behavior is a complex and mathematically difficult area to model.
- **II.** First Principles Analysis determines predominant contributing factors.

First Principles Applied to Fluid Flow

- I. Calculation of fluid flow behavior is a complex and mathematically difficult area to model.
- **II.** First Principles Analysis determines predominant contributing factors.
- III. In this problem, the surface geometry (shape) of the top of the tank (B/A ratio) is the primary governing factor.

I. Free Convection

Roger W. Pryor, Ph.D.

- I. Free Convection
- **II. Driving Forces:**
 - a) temperature differential

- I. Free Convection
- **II. Driving Forces:**
 - a) temperature differential
 - b) differential density

- I. Free Convection
- **II. Driving Forces:**
 - a) temperature differential
 - b) differential density
 - c) geometry of the flow path

- I. Free Convection
- **II. Driving Forces:**
 - a) temperature differential
 - b) differential density
 - c) geometry of the flow path
 - d) gravitational force

- I. Free Convection
- **II. Driving Forces:**
 - a) temperature differential
 - b) differential density
 - c) geometry of the flow path
 - d) gravitational force
- **III.** Tank (water) Temperature

COMSOL Heat Transfer Model 1:

Tank Top B/A Ratio = 1.0

2D Axisymmetric Heat Transfer Initialization Model

Model 1 - Accurate Heat Transfer Results

Roger W. Pryor, Ph.D.

COMSOL Navier-Stokes Model 2:

Tank Top B/A Ratio = 1.0 2D Axisymmetric Free Convection Model Model 2 - Accurate Convection Results

Roger W. Pryor, Ph.D.

Model Constants:

Name Value 0.01[W/(m*K)]k_insul 1[atm]p_atm Length 0.4[m]**T_water 95[degC] 20[degC]** T amb $60[kg/m^3]$ rho_insul 200[J/(kg*K)]**Cp_insul** Length2 0.15[m]

Description k (Insulation) Air pressure Height of tank* Water Temperature Ambient Temperature Density (Insulation) Heat Capacity (Insulation) Width of Tank

*This is the projected height and varies for different tank configurations: Length = B(Semi-axis length) + Height (Tank Rectangle)

Model Scalar Expressions:

NameExpressionF_buoyancy*9.81[m/s^2]*(rho_air_ref-rho_chns)

rho_air_ref** mat2_rho(p_atm[1/Pa],T_amb[1/K])[kg/m^3]

*Buoyancy Force ** Density of Air @ STP

Roger W. Pryor, Ph.D.

Setting up the Geometry for Models 1&2:

Tank Top Configuration (TTC) #	A[m]	B[m]	B/A	Convergence
1	0.15	0.15	1	Yes
2	0.15	0.20	1.33	Yes
3	0.15	0.05	0.33	Yes
4	0.15	0.03	0.20	HT: Yes
				N-S: No
5	0.15	0.04	0.267	Yes
6	0.15	0.033	0.22	Yes

Elliptical Tank Top Geometric Specifications

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

Setting up the Physics Subdomain Model 1(HT):

Subdomain #	Source	Material
1	BML**	structural steel
2	Constants	k_insul rho_insul Cp_insul
3	BML	structural steel
5	BML	Air*

******(BML) Basic Materials Library

*replace p with p_atm

Setting up the Physics Boundary Settings Model 1(HT):

Boundary	Condition	Setting
8, 14, 20	Temperature	T_water in T₀ edit window
23	Heat Flux	Load h: Nat. Vertical wall, L=height
		Change L_htgh to Length
		Enter T_amb in T _{inf} edit window
29	Heat Flux	Load h: Nat Horiz. plane, Upside, L=width
		Change L_htgh to Length2
		Enter T_amb in T _{inf} edit window

Meshing and Solving Model 1(HT):

Use the default Mesh and Solver Parameters

Click Solve

Roger W. Pryor, Ph.D.

Model 1 B/A = 1Length = **0.4[m]** Length2 = **0.15[m]** C = Yes

Roger W. Pryor, Ph.D.

C = Yes

Model 1 B/A = 1.33 Length = 0.45[m]

Length2 =

0.15[m]

C = Yes

Roger W. Pryor, Ph.D.

Model 1 B/A = 1.33 Length = 0.45[m] Length2 = 0.15[m]

C = Yes

Model 1 B/A = 0.33 Length = 0.30[m] Length2 = 0.15[m] C = Yes

Roger W. Pryor, Ph.D.

Model 1 B/A = 0.20 Length = 0.28[m] Length2 = 0.15[m]

C = Yes

Roger W. Pryor, Ph.D.

C = Yes

Roger W. Pryor, Ph.D.

Model 2: Building a Navier-Stokes Multiphysics Model(s)

Do the following steps for each of the HT configurations (1-6): Multiphysics> Model Navigator> Heat Transfer Module> Weakly Compressible Navier-Stokes> Steady-state analysis> Click Add> Click OK.

Setting up the Physics Subdomain in each Model 2 (N-S) configuration:

Subdomain #	Source	Material
1-5	Inactive	
6	BML	Air*
		F _z =F_buoyancy

>Click the Density tab>

****(BML) Basic Materials Library**

*replace rho(p[... with rho((p+p_atm)[...

Model 2: Physics Settings HT Subdomain Settings

Do the following steps for each of the N-S configurations (1-6):

Multiphysics>General Heat Transfer>Physics>Subdomain settings Select: Subdomain 6>Select the Active in this domain check box. Select: Air from the Library material list.

Model 2: Physics Settings HT Subdomain Settings

Do the following steps for each of the N-S configurations (1-6):

Multiphysics>General Heat Transfer>Physics>Subdomain settings Select: Subdomain 6>Select the Active in this domain check box. Select: Air from the Library material list.

Click the Convection tab.

Select: Enable convective heat transfer check box.
Replace: rho(p[... with rho((p+p_atm)[...
In the Density edit window. Click Apply
Enter: u and v in the Velocity field edit windows.

Model 2: Physics Settings HT Subdomain Settings

Do the following steps for each of the N-S configurations (1-6):

Multiphysics>General Heat Transfer>Physics>Subdomain settings Select: Subdomain 6>Select the Active in this domain check box. Select: Air from the Library material list.

Click the Convection tab. Select: Enable convective heat transfer check box. Replace: rho(p[... with rho((p+p_atm)[... In the Density edit window. Click Apply Enter: u and v in the Velocity field edit windows.

Click the Artificial Diffusion button. Select: Streamline diffusion check box. Select: Galerkin least-squares (GLS) from the list.

Roger W. Pryor, Ph.D.

Model 2: Physics Settings HT Boundary Conditions Do the following steps for each of the N-S configurations (1-6): Select: Multiphysics> General Heat Transfer> Physics>Boundary Settings.

Boundary	Condition
18	Axial Symmetry
19	Convective Flux
24	Thermal Insulation
25	Temperature
	Enter \mathbf{T}_{amb} in the \mathbf{T}_{0} edit window

Roger W. Pryor, Ph.D.

Model 2: Physics Settings N-S Boundary Conditions

Do the following steps for each of the N-S configurations (1-6):

Select: Multiphysics> Weakly Compressible Navier-Stokes>Boundary Settings.

Boundary	Boundary Type	Boundary Condition
18	Symmetry boundary	Axial Symmetry
19	Outlet	Normal stress f ₀ to 0
25	Open boundary	Normal stress f ₀ to 0
23, 24, 29	Wall	No slip

Roger W. Pryor, Ph.D.

Model 2 Mesh Generation:

Select: Mesh>Free Mesh Parameters Select: Subdomain tab In the Subdomain selection window, Select: Subdomain 6 > Enter 0.005 in the Subdomain mesh parameters edit window> Select: Quad> Click the Remesh button> Click OK

Quad Mesh generated for an Elliptically Shaped Tank Top B/A = 1.0

Solver Parameters:

Click the Stationary tab Select: Damped Newton, Highly nonlinear problem, Manual tuning of damping parameters Check boxes

Solver Parameters:

Click the **Stationary** tab **Select: Damped Newton, Highly nonlinear problem, Manual tuning of damping parameters Check boxes**

Enter:Relative tolerance1.0E-2Maximum iterations50Initial damping factor1.0E-4Minimum damping factor1.0E-12

Solver Parameters:

Click the **Stationary** tab **Select: Damped Newton, Highly nonlinear problem, Manual tuning of damping parameters Check boxes**

Enter:	
Relative tolerance	1.0E-2
Maximum iterations	50
Initial damping factor	1.0E-4
Minimum damping factor	1.0E-1 2

Click Advanced tab)
Type of scaling	
Click OK	
Select: Solve	

none

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

Conclusions

Successful implementation of a model is dependent on small parametric differences.

Non-Convergent

Convergent

2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Roger W. Pryor, Ph.D.

Thank

you!

Roger W. Pryor, Ph.D.