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Overview:

I. Why solve this particular free convection problem?

II. How does a First Principles Analysis relate to this 
shape dependent model?

III. How was the model built and solved?

IV. What benefits are derived from applying this 
modeling technique?
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Defining the Geometry of the Tank Top :
What is the B/A Ratio?
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Geometric Specifications
Elliptical Tank Top : A-Semiaxis, B-Semiaxis
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II. 2D Axisymmetric Geometry 

III. New Model Based on examples presented 
in: thermos laminar hcoeff and thermos 
laminar flow (Heat Transfer Module 
Model Library (COMSOL 3.4))

IV. Shape Ratio (B/A) Varied by changes in 
the Elliptical Tank Top

V. Shape-Dependent Model Convergence 
determined by both Tank Top Shape (B/A 
Ratio) and Modified Solver Parameters
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Navier-Stokes Streamline Patterns generated 
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I. Calculation of fluid flow behavior is a complex and 
mathematically difficult area to model.

II. First Principles Analysis determines predominant 
contributing factors.

III. In this problem, the surface geometry (shape) of the 
top of the tank (B/A ratio) is the primary governing 
factor.
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The Physics:

I. Free Convection

II. Driving Forces:

a) temperature differential

b) differential density

c) geometry of the flow path 

d) gravitational force 

III. Tank (water) Temperature
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COMSOL Heat Transfer Model 1:

2D Axisymmetric Heat Transfer Initialization Model

Model 1 - Accurate Heat Transfer Results
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Tank Top B/A Ratio = 1.0



COMSOL Navier-Stokes Model 2:

2D Axisymmetric Free Convection Model

Model 2 - Accurate Convection Results
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Tank Top B/A Ratio = 1.0



Model Constants:
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Name Value Description
k_insul 0.01[W/(m*K)] k (Insulation)
p_atm 1[atm] Air pressure 
Length 0.4[m] Height of tank*
T_water 95[degC] Water Temperature
T_amb 20[degC] Ambient Temperature
rho_insul 60[kg/m^3] Density (Insulation)
Cp_insul 200[J/(kg*K)] Heat Capacity (Insulation)
Length2 0.15[m] Width of Tank

*This is the projected height and varies for different tank configurations:  Length = B(Semi-axis length) + Height 
(Tank Rectangle) 



Model Scalar Expressions:
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Name Expression
F_buoyancy* 9.81[m/s^2]*(rho_air_ref-rho_chns)

rho_air_ref** mat2_rho(p_atm[1/Pa],T_amb[1/K])[kg/m^3]

*Buoyancy Force         ** Density of Air @ STP



Setting up the Geometry for Models 1&2:
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Elliptical Tank Top Geometric Specifications

Tank Top 
Configuration 

(TTC) #

A[m] B[m] B/A Convergence

1 0.15 0.15 1 Yes
2 0.15 0.20 1.33 Yes
3 0.15 0.05 0.33 Yes
4 0.15 0.03 0.20 HT: Yes 

N-S: No
5 0.15 0.04 0.267 Yes
6 0.15 0.033 0.22 Yes



The Models 1&2 Geometry:
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Setting up the Physics Subdomain 
Model 1(HT):
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Subdomain # Source Material
1 BML** structural steel

2 Constants k_insul 
rho_insul
Cp_insul

3 BML structural steel

5 BML Air*

*replace p with p_atm**(BML) Basic Materials Library



Setting up the Physics Boundary Settings 
Model 1(HT):
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Boundary Condition Setting
8, 14, 20 Temperature T_water in T0 edit window

23 Heat Flux Load h: Nat. Vertical wall, L=height
Change L_htgh to Length

Enter T_amb in Tinf edit window
29 Heat Flux Load h: Nat Horiz. plane, Upside, L=width

Change L_htgh to Length2
Enter T_amb in Tinf edit window



Meshing and Solving Model 1(HT):
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Use the default Mesh and Solver Parameters

Click Solve



Model 1(HT):Solutions
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Model 2: Building a Navier-Stokes 
Multiphysics Model(s)
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Do the following steps for each of the
HT configurations (1-6):
Multiphysics>
Model Navigator>
Heat Transfer Module>
Weakly Compressible Navier-Stokes>
Steady-state analysis>
Click Add>
Click OK.



Setting up the Physics Subdomain 
in each Model 2 (N-S) configuration:
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Subdomain # Source Material
1-5 Inactive

6 BML Air*
Fz=F_buoyancy

>Click the Density tab>

*replace rho(p[... with rho((p+p_atm)[...**(BML) Basic Materials Library



Model 2: Physics Settings HT Subdomain Settings
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Do the following steps for each of the
N-S configurations (1-6):

Multiphysics>General Heat Transfer>Physics>Subdomain settings
Select: Subdomain 6>Select the Active in this domain check box.
Select: Air from the Library material list.
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Do the following steps for each of the
N-S configurations (1-6):

Multiphysics>General Heat Transfer>Physics>Subdomain settings
Select: Subdomain 6>Select the Active in this domain check box.
Select: Air from the Library material list.

Click the Convection tab.
Select: Enable convective heat transfer check box.
Replace: rho(p[... with rho((p+p_atm)[...
In the Density edit window. Click Apply
Enter: u and v in the Velocity field edit windows.



Model 2: Physics Settings HT Subdomain Settings
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Do the following steps for each of the
N-S configurations (1-6):

Multiphysics>General Heat Transfer>Physics>Subdomain settings
Select: Subdomain 6>Select the Active in this domain check box.
Select: Air from the Library material list.

Click the Convection tab.
Select: Enable convective heat transfer check box.
Replace: rho(p[... with rho((p+p_atm)[...
In the Density edit window. Click Apply
Enter: u and v in the Velocity field edit windows.

Click the Artificial Diffusion button. 
Select: Streamline diffusion check box. 
Select: Galerkin least-squares (GLS) from the list.



Model 2: Physics Settings 
HT Boundary Conditions
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Do the following steps for each of the
N-S configurations (1-6):

Boundary Condition

18 Axial Symmetry

19 Convective Flux

24 Thermal Insulation

25 Temperature
Enter T_amb in the T0 edit window

Select: Multiphysics>
General Heat Transfer> 
Physics>Boundary Settings.

18

19

24

25



Model 2: Physics Settings 
N-S Boundary Conditions

Roger W. Pryor, Ph.D. Pryor Knowledge Systems

Do the following steps for each of the
N-S configurations (1-6):

Boundary Boundary Type Boundary Condition

18 Symmetry boundary Axial Symmetry

19 Outlet Normal stress
f0 to 0

25 Open boundary Normal stress
f0 to 0

23, 24, 29
Wall No slip

Select: Multiphysics> Weakly Compressible 
Navier-Stokes>Boundary Settings.



Model 2 Mesh Generation:
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Select: Mesh>Free Mesh Parameters
Select: Subdomain tab
In the Subdomain selection window, Select:
Subdomain 6 > 
Enter 0.005 in the 
Subdomain mesh parameters edit window>
Select: Quad> 
Click the Remesh button>
Click OK

Quad Mesh generated for an 
Elliptically Shaped Tank Top

B/A = 1.0



Solver Parameters:
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Click the Stationary tab
Select: Damped Newton, Highly nonlinear problem,
Manual tuning of damping parameters Check boxes



Solver Parameters:
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Click the Stationary tab
Select: Damped Newton, Highly nonlinear problem,
Manual tuning of damping parameters Check boxes
Enter:
Relative tolerance 1.0E-2
Maximum iterations 50
Initial damping factor 1.0E-4
Minimum damping factor 1.0E-12



Solver Parameters:
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Click the Stationary tab
Select: Damped Newton, Highly nonlinear problem,
Manual tuning of damping parameters Check boxes
Enter:
Relative tolerance 1.0E-2
Maximum iterations 50
Initial damping factor 1.0E-4
Minimum damping factor 1.0E-12

Click Advanced tab
Type of scaling none
Click OK
Select: Solve
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Conclusions
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2D Axisymmetric Elliptical Tank Top Model Cross-Sections

Model 2

B/A = 0.20

Length =

0.28[m]

Length2 =

0.15[m]

Model 2

B/A = 0.22

Length =

0.283[m]

Length2 =

0.15[m]

Successful 
implementation 
of a model is 
dependent on 
small 
parametric 
differences. 

ConvergentNon-Convergent



Thank 
you!

Roger W. Pryor, Ph.D. Pryor Knowledge Systems


	Shape, Convection �and Convergence
	Who is Pryor Knowledge Systems?
	Who is Pryor Knowledge Systems?
	Who is Pryor Knowledge Systems?
	Who is Pryor Knowledge Systems?
	Overview:
	Overview:
	Overview:
	Overview:
	Defining the Geometry of the Tank Top :��What is the B/A Ratio?
	Introduction:
	Introduction:
	Introduction:
	Introduction:
	Introduction:
	First Principles Applied to Fluid Flow
	First Principles Applied to Fluid Flow
	First Principles Applied to Fluid Flow
	The Physics:
	The Physics:
	The Physics:
	The Physics:
	The Physics:
	The Physics:
	COMSOL Heat Transfer Model 1:
	COMSOL Navier-Stokes Model 2:
	Model Constants:
	Model Scalar Expressions:
	Setting up the Geometry for Models 1&2:
	The Models 1&2 Geometry:
	The Models 1&2 Geometry:
	The Models 1&2 Geometry:
	The Models 1&2 Geometry:
	The Models 1&2 Geometry:
	The Models 1&2 Geometry:
	Setting up the Physics Subdomain �Model 1(HT):
	Setting up the Physics Boundary Settings �Model 1(HT):
	Meshing and Solving Model 1(HT):
	Model 1(HT):Solutions
	Model 1(HT):Solutions
	Model 1(HT):Solutions
	Model 1(HT):Solutions
	Model 1(HT):Solutions
	Model 1(HT):Solutions
	Model 2: Building a Navier-Stokes �Multiphysics Model(s)
	Setting up the Physics Subdomain � in each Model 2 (N-S) configuration:
	Model 2: Physics Settings HT Subdomain Settings
	Model 2: Physics Settings HT Subdomain Settings
	Model 2: Physics Settings HT Subdomain Settings
	Model 2: Physics Settings �HT Boundary Conditions
	Model 2: Physics Settings �N-S Boundary Conditions
	Model 2 Mesh Generation:
	Solver Parameters:
	Solver Parameters:
	Solver Parameters:
	Navier-Stokes Free Convection Solutions:
	Navier-Stokes Free Convection Solutions:
	Navier-Stokes Free Convection Solutions:
	Navier-Stokes Free Convection Solutions:
	Navier-Stokes Free Convection Solutions:
	Navier-Stokes Free Convection Solutions:
	Conclusions
	Slide Number 63

