Analyzing Muffler Performance using the Transfer Matrix Method

By Kasper Steen Andersen, Dinex Emission Technology A/S

Content

The Transfer Matrix Method
The Numerical Models
Results
Conclusion

Exhaust Systems in General

Exhaust gas transportation
Noise reduction
NOx, HC, PM reduction

The Transfer Matrix

The acoustical transfer properties of a system

Plane wave decomposition in the connecting pipes

The Transfer Matrix Extraction

Evaluation Parameters Transmission loss (source independent)

Insertion loss (source dependent)

Evaluation parameters Transmission loss (source independent)

Insertion loss (source dependent)

Evaluation parameters Transmission loss (source independent)

$$TL = 10\log\left(\frac{1}{4}\left|T_{11} + T_{12}\frac{S}{\rho c} + T_{21}\frac{\rho c}{S} + T_{11}\right|^2\right)$$

Insertion loss (source dependent)

Evaluation parameters Transmission loss (source independent)

$$TL = 10\log\left(\frac{1}{4}\left|T_{11} + T_{12}\frac{S}{\rho c} + T_{21}\frac{\rho c}{S} + T_{11}\right|^2\right)$$

Insertion loss (source dependent)

Evaluation parameters Transmission loss (source independent)

$$TL = 10\log\left(\frac{1}{4}\left|T_{11} + T_{12}\frac{S}{\rho c} + T_{21}\frac{\rho c}{S} + T_{11}\right|^2\right)$$

Insertion loss (source dependent)

The Numerical Model

The Numerical Model

Boundary Conditions

- Solid walls (sheet metal)
- Coupling boundaries conditions (wave propagation from one medium to another)
- Radiation conditions (reflection free ends)
- Impedance conditions (perforated plates)

Subdomain Conditions

Air

- Defined by the speed of sound and the density
- Absorptive material
 - Defined by the apparent density and average fiber diameter
 - Based on theory by Delany and Bazley, Bies and Hansen
- Ceramic structure (Diesel Particulate Filter)
 - Preliminary described by general damping

Simulation Setup

- Maximum element size = $\lambda/5$ = 34 mm
- > 24.000 elements, 38.000 DOF
- PARDISO solver
- 100 discrete frequencies

The Measurement Setup

- The two source method
 - Up and down stream source direction
- Flow speed up to 30 m/s (cold air)
 - Corresponds to 160 kW engine @ rated speed

The Test Objects

The reflection muffler

The absorption muffler

The perforated muffler

Automotive exhaust

- Reflection muffler
 - Simple expansion chamber
 - Quarter wave resonator
- Absorption muffler
- Perforated muffler
 - ► Hole size: Ø3, Ø4, Ø8, Ø12
 - ▶ Porosity: 10 40 %
- Automotive exhaust
 - Diesel Particulate Filter
 - Hybrid muffler

The Reflective Muffler Comparison

- Good correlation
- Peak offset due to inaccurate lengths, temperatures, densities
- First axisymmetric higher-order mode will propagate above 1400 Hz.
- First TL peak corresponds to a quarter muffler length

The Quarter Wave Resonator Comparison

- Again good correlation
- The first peak corresponds to a quarter pipe length.
- The 500 Hz minima could be eliminated by a pipe of 1/8 of the muffler length.

The Absorption Muffler Comparison

Transmission Loss

Measured Simulated

The Plug Flow Muffler Comparison

- 0 m/s flow speed
 - Good correlation
 - 800 Hz peak due to 80 mm extended inlet
- 30 m/s flowspeed
 - Good correlation
 - ▶ 1350 Hz peak not affected in simulation
 - Peaks limited by losses due to flow

The Plug Flow Muffler Simulations

Flow speed variations (Ø3, 25 %)

Flow smoothes the peaks and dips

- Porosity variations (Ø4, 30 m/s)
 - Same effect as changing the flow speed
 - Porosity is important, not hole size

The Hybrid Muffler Comparison at 0 m/s

The Results (preliminary)

The Diesel Particulate Filter Comparison at 0 m/s

No correlation (general damping)

Conclusion

Successful transfer matrix approach

► One run

Insertion loss calculation possible

- Model validation
 - Reflective and plug flow muffler
 - Absorptive and ceramic
- Simulation approach
 - Frequency limitations by pipe diameter
 - Short setup time
 - Easy redesign

Future work

 Pressure loss and mean flow distribution simulation
 backpressure result

Source impedance measurements
 -> Insertion loss results

Questions?

Appendix

Appendix

Benefits

- Of acoustic simulation of exhaust systems
 - Reduced cost price and development time
 - Increased performance and knowledge
 - Minimizing material consumption
 - Simplifying construction and production
- Of using the Transfer Matrix approach
 - Modular approach
 - Transmission loss calculation
 - Insertion loss calculation

going the extra mile

Limitations

► Upper frequency is 2 kHz $f < \frac{1.84c}{r}$ πD D is the duct diameter f is the frequency c is the speed of sound Exhaust system length max 15 m Max 150 dB re 20 μPa Constant temperature Zero mach number

