

Electrically-based spin switching in hetero-dimensional quantum dot device

Sanjay Prabhakar and James Raynolds University at Albany, State University of New York Funded by DARPA/NRI INDEX CENTER

Back Ground

- •Introduction of single electron transistor
- Introduction of 2D electron Gas in Fock-Darwin states
- •Hamiltonian of III-V type Semiconductor
- •Effect of Bulk Inversion symmetry (Dresselhauss Effect)
- •Effect of Structural Inversion symmetry (Rashba Effect)

•Results:

- •Illustrations of Asymmetric confining potential in III-V semiconductor (Based on DFT and Finite element method).
- •Illustrations of few eigen states and wave functions in this realistic asymmetric confining potentials.
- •Calculations of electron g-value in symmetric and Asymmetric confining potentials
- •Summary and Conclusions

Bandyopadhyay: Phys. Rev. B 61, 13813 (2000)

Global ac magnetic field

Possible spin-SET prototype (Oktyabrsky)

Goal: Development for planar SET prototype using:

- High-k gate stack on InGaAs/AlGaAs structure
- Hetero-dimensional control of 2D-1D-0D electrons
- Eventually self-assembled InAs QD

Schematic for EDSR spin control [Loss et al ., PRB 2006]

Results

Electric potential in conducting (quantum well) layer

Anisotropic confining potentials

potential along symmetry axis

potential normal to symmetry axis

Results: Based on DFT and Finite element method

•Realistic confining potential along growth direction

•Illustration of wave functions in the realistic asymmetric confining potential

UNIVERSITY AT ALBANY State University of New York

Results

Strategy: simple to complex

•Use Finite Element Method

•Simple: Solve electrostatic problem with simplified (classical) conductors to determine confining potentials

•Solve Schrödinger equation in fixed potential and effective mass approximation

•Determine wave functions and electric field effects.

•Complex: Self-consistent Schrödinger/Poisson

•Exchange-correlation effects (DFT)

Electrical control of "g" (physical mechanisms)

Wave function overlap: electric fields can "move" the wave function to sample different materials (e.g. GaAs has g = -0.44; AlGaAs has g = +0.4) see PRB 64, 041307 (2001) Spin-orbit: (see PRB 68, 155330 (2003) Dresselhaus: $H_{D1} \propto (-\sigma_x P_x + \sigma_y P_y)$

 $H_{D2} \propto (\sigma_x P_x P_y^2 - \sigma_y P_y P_x^2)$

Rashba:

 $H_R \propto E(\sigma_x P_y - \sigma_y P_x)$

UNIVERSITY AT ALBANY State University of New York

Hamiltonian of QD in III-V semiconductor

Hamiltonian for a single electron bound to a heterojunction QD

$$H = H_0 + H_z + H_R + H_{D1} + H_{D2}$$
$$H_0 = \frac{\vec{P}^2}{2m^*} + \frac{1}{2}m^*\omega_0^2 r^2 + \frac{1}{2}g_0 \mu_B \sigma_z B$$

Kinetic momentum

Canonical momentum

$$\vec{\mathbf{P}} = \vec{p} + \frac{e}{c}\vec{\mathbf{A}}$$
$$\vec{p} = -i\hbar\left(\partial_{\mathbf{X}},\partial_{\mathbf{Y}},0\right)$$

Vector Potential

$$\vec{A} = \frac{B}{2} (-y, x, 0)$$

PRB 68,155330(2003)

Analytical solution of H0

$$H_{0} = \hbar \omega_{+} \left(n_{+} + \frac{1}{2} \right) + \hbar \omega_{-} \left(n_{-} + \frac{1}{2} \right) + \frac{1}{2} g_{0} \mu_{B} \sigma_{z} B$$

renormalized dot frequency

Where

 $\omega_{\pm} = \Omega \pm \frac{\omega_c}{2}$ $\Omega = \sqrt{\omega_0^2 + \frac{\omega_c^2}{4}}$ $\omega_c = \frac{eB}{m^* c}$

PRB 68,155330(2003)

Fock Darwin Radius

Cyclotron frequency

Number Operator

$$\ell = \sqrt{\frac{\hbar}{m^*}\Omega}$$

$$\mathbf{n}_{\pm} = a_{\pm}^{\dagger} a_{\pm}$$

$$\mathbf{H} = \mathbf{H}_0 + \mathbf{H}_z + \mathbf{H}_R + \mathbf{H}_{D1} + \mathbf{H}_{D2}$$

2nd term represents the QW confinement in growth direction

PRB 68,155330 (2003)

$\mathbf{H} = \mathbf{H}_0 + \mathbf{H}_z + \mathbf{H}_R + \mathbf{H}_{D1} + \mathbf{H}_{D2}$

The structural inversion asymmetry in V(z) leads to the Rashba (spin orbit) interaction

$$H_R = \frac{\alpha_R \ e \ E}{\hbar} \left(\sigma_x P_y - \sigma_y P_x \right)$$

Phys. Rev. B 68,155330(2003); Phys. Rev. B 55,16293(1997) Phys. Rev. B 50,8523 (1994)

$\mathbf{H} = \mathbf{H}_0 + \mathbf{H}_z + \mathbf{H}_R + \mathbf{H}_{D1} + \mathbf{H}_{D2}$

- Bulk inversion asymmetry is associated with Dresselhauss interaction
- Two Spin orbit terms -Linear in momenta

-Cubic in momenta

$$\begin{split} \mathbf{H}_{D1} &= \frac{0.7794 \, \gamma_c k^2}{\hbar} \Big(-\sigma_x \mathbf{P}_x + \sigma_y \mathbf{P}_y \Big) \\ \mathbf{H}_{D2} &= \frac{\gamma_c}{\hbar^3} \Big(-\sigma_x \mathbf{P}_x \mathbf{P}_y^2 - \sigma_y \mathbf{P}_y \mathbf{P}_x^2 \Big) + H.c. \end{split}$$

Phys. Rev. B 68,155330(2003); Phys. Rev. B 55,16293(1997) Phys. Rev. B 50,8523 (1994)

UNIVERSITY AT ALBANY State University of New York

Results
$$H = H_0 + H_z + H_R + H_{D1} + H_{D2}$$

 $H_0 = \frac{\vec{P}_x^2 + \vec{P}_y^2}{2m^*} + \frac{1}{2}m^*\omega_0^2(x^2 + y^2) + \frac{1}{2}g_0 \mu_B \sigma_z B$

Illustration of QD in symmetric confining potential including spin

Science & Engineering

UNIVERSITY AT ALBANY State University of New York

<u>College</u> of <u>Nanoscale</u> Science & Engineering

UNIVERSITY AT ALBANY State University of New York

8

6

magnetic field (T)

Ζ

Results Magnetic Field Control of Spin in Parabolic **Potential Confining Potential**

$$H = H_{0} + H_{z} + H_{R} + H_{D1} + H_{D2}$$

$$H_{0} = \frac{\vec{P}_{x}^{2} + \vec{P}_{y}^{2}}{2 m^{*}} + \frac{1}{2} m^{*} \omega_{0}^{2} (x^{2} + y^{2}) + \frac{1}{2} g_{0} \mu_{B} \sigma_{z} B$$

$$g = \frac{(E_{2} - E_{1})}{\mu_{B} B}$$

$$g = \frac{(E_{2} - E_{1})}{\mu_{B} B}$$

Also See Phys. Rev. B 68, 55330 (2003)

UNIVERSITY AT ALBANY State University of New York

New Results

$$H = H_0 + H_z + H_R + H_{D1} + H_{D2}$$
$$H_0 = \frac{\vec{P}_x^2 + \vec{P}_y^2}{2m^*} + \frac{1}{2}m^*\omega_0^2 \left(\alpha x^2 + \beta y^2\right) + \frac{1}{2}g_0 \mu_B \sigma_z B$$

Illustration of QD in Asymmetric confining potential including spin

SCIENCE & ENGINEERING UNIVERSITY AT ALBANY State University of New York

College of Nanoscale

Science & Engineering

College of Nanoscale

UNIVERSITY AT ALBANY State University of New York

New Results

Electric Field Control of Spin in Asymmetric Confining Parabolic Potential $H = H_0 \perp H \perp H_D \perp H_D \perp H_D$

$$H_{0} = \frac{\vec{P}_{x}^{2} + \vec{P}_{y}^{2}}{2 m^{*}} + \frac{1}{2} m^{*} \omega_{0}^{2} \left(\alpha x^{2} + \beta y^{2}\right) + \frac{1}{2} g_{0} \mu_{B} \sigma_{z} B$$

UNIVERSITY AT ALBANY State University of New York

Results Electric Field Control of Spin in Parabolic Confining Potential

Summary and Conclusions

- •A 3D finite-element simulation strategy to study electrical spin control is being pursued
- •E-field effects on electron "g" value due to spin orbit interactions in symmetric and asymmetric confining potentials have been demonstrated.
- •Anisotropic confining potentials for realistic device enhance spin-orbit effects