

Simulation and Validation of Pan Evaporation Using COMSOL Multiphysics®

Larry John Matel, P.E.

Class A Evaporation Pan

Interested Communities

- Water Resource Managers Hydrologists
- Soil Scientists
- •Agronomists
- Meteorologists

Green Streets Infrastru

Common Equations

- Penman
- •Thornwaite
- Romaneko
- •Turc
- •Others

E[mm/d] = 0.35(1 + 0.24u)(es - ea) $E[cm/mo] = 1.6\left(\frac{10T}{I}\right)a$ $E[mm/mo] = 0.0018(25 + T)^2(10 - hn)$ E[mm/d] = 0.013(T/(15 + T))(R + 50)

984

.

WINTER ET AL.: ELEVEN EQUATIONS FOR DETERMINING EVAPORATION

Table 1. Selected Equations Developed for Calculation of Potential Evapotranspiration (PET) or Evaporation

Method	Reference	Equation	
Brutsaert-Stricker,* cal cm ⁻² d ⁻¹	Brutsaert and Stricker [1979]	$PET = (2\alpha - 1)(s/(s + \gamma))(Q_n - Q_x) - (\gamma/(s + \gamma))[0.26(1 + 0.86U_2)]$	PET
DeBruin,* cal cm ⁻² d ⁻¹	DeBruin [1978]	$\begin{array}{l} \cdot (e_0 - e_\alpha) \\ \text{PET} = (\alpha/(\alpha - 1))1.141(\gamma/(s + \gamma)) \\ \cdot [(3.6 + 2.5(U_2))(e_0 - e_\alpha)] \end{array}$	PET
DeBruin-Keijman,* cal cm ⁻² d ⁻¹	DeBruin and Keijman [1979]	$PET = [SVP/(0.95SVP + 0.63\gamma)]$	PET
Hamon, cm d^{-1}	Hamon [1961]	$PET = [0.55(D/12)^2(SVD/100)]2.54$	PET
Jensen-Haise, cm d ⁻¹	McGuinness and Bordne [1972]	$PET = \{[((0.014T_a) - 0.50)(Q_1)] 0.000673\} \} 2.54$	PET (N
Makkink, cm d ⁻¹	McGuinness and Bordne [1972]	$PET = [0.61(s/(s + \gamma))(Q_s/L)] - 0.012$	PET
Mass transfer, cm d^{-1}	Harbeck et al. [1958]	$\mathbf{E} = NU_2(e_0 - e_a)$	Eva _j of
Papadakis, cm month $^{-1}$	McGuinness and Bordne [1972]	$PET = 0.5625[e_0 max - (e_0 min - 2)]$	PET
Penman,* cal $cm^{-2} d^{-1}$	Jensen et al. [1974]	$PET = (s/(s + \gamma))(Q_n - Q_x) + (\gamma/(s + \gamma))[(15.36(0.5 + 0.01U_2))]$	PET
Priestley-Taylor, cm d ⁻¹	Stewart and Rouse [1976]	$PET = \alpha(s/(s + \gamma))[(Q_n - Q_x)/L]$	PET
Stephens-Stewart, cm d ⁻¹	McGuinness and Bordne [1972]	$PET = \{ [(0.0082T_a) - 0.19] \\ \cdot (Q_s/1500) \} 2.54$	PET
			And a second sec

- - --

6000

Green Streets Infrastructure LLC

Developed for

r, daily

Γ, for periods of 10 days or greater

r, daily

, daily for periods greater than 5 days Nebraska) , monthly (Holland)

poration, depending on calibration fΝ f, monthly

F, for periods greater than 10 days

f for periods of 10 days or greater

. .

r, monthly (Florida)

COMSOL Multiphysics Approach

 $\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot [-p\mathbf{I} + \mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] + \mathbf{F}$ $\frac{\partial c_i}{\partial t} + \nabla \cdot (-D\nabla c_i) + \mathbf{u} \cdot \nabla c_i = R_i$

Parameters and Variables

- •Air Temperature
- Diffusion Coefficient Water Vapor in Air
- •Saturated Air (moles/m^3)
- •Absolute Humidity (moles/m^3)
- Wind Speed

Green Streets Infrastructure LLC

> por in Air

COMSOL CONFERENCE 2016 BOSTON Ambient Air Temperature and **Absolute Humidity Variations**

COMSOL CONFERENCE 2016 BOSTON Saturated Air Absolute Humidity and Diffusion Coefficient

COMSOL CONFERENCE 2016 BOSTON Model Geometry

COMSOL CONFERENCE 2016 BOSTON Simulation Results

١

Validation Results

Summary

Surface: Total flux, y component (mol/(m²*s))

References

Montgomery, R. B. Viscosity and Thermal Conductivity of Air and Diffusivity of Water Vapor in Air. Journal of Meteorology, Pages 193-196, December 1947.

Winter, T.C. and Rosenberry, D.O. Evaluation of 11 Equations for Determining Evaporation for a Small Lake in the North Central United. States. Water Resources Research, Vol. 31 No.4, Pages 983-993, April 1995.

References

Western Regional Climate Center, http://www.wrcc.dri.edu/climatedate/tables/

Xu, C.Y. and Singh, V.P. Dependence of Evaporation on Meteorological Variables at Different Time-Scales and Intercomparison of Estimation *Methods.* Hydrological Processes, 12, Pages 429-442, 1998.

AcknowledgementsCOMSOL Inc.

