Numerical simulation of quasi-steady-state gas flow in a landfill Qiang Zheng Zhejiang University, College of Environmental & Resource Science, No.866 Yuhangtang Road, Hangzhou, Zhejiang, 310058

Introduction: Landfills, composed of large amounts of organic substances, undergo continuous microbial degradation, which generates lots of gas such as CH_4 and CO₂. Landfill gas will explode when CH_4 reaches a certain concentration, meanwhile it is also a promising source of renewable energy and needs to be utilized.

Results: The pressure contour in Fig 3 indicates that the gas moves almost horizontally and will be collected by the well. Furthermore, the flow rate increases with the decreasing cover permeability of and its increasing thickness because both of them can increase the resistance of gas emission from the final cover.

Fig 1. Landfill gas extracted for electricity generation

Calculation : Mass conservation equation and Darcy's law are coupled in this case. Gas production rate is contributed by three components and varies with time.

Fig 3. The pressure contour

Variables	Values	Unit
Viscosity	1.54e-5	Pa*s
Permeability of cover	1.0e-13	m^2
Horizontal permeability of waste	3.0e-12	m^2
Vertical permeability of waste	1.0e-12	m^2

The geometry of landfill is followed.

 Tab 1. Viscosity and

permeability values

Fig 5. Flow rate varies with cover permeability

Conclusions: Both increasing the thickness and decreasing the permeability of final cover can reduce the gas emission from cover surface and increase the amount of gas extracted from the well. In the future, multi-wells modelling and extraction strategy optimization will be considered.

Fig 2. The landfill geometry

COMSOL CONFERENCE 2015北京

References:

1. Chen Y C, Chen K S, Wu C H. Numerical simulation of gas flow around a passive vent in a sanitary landfill[J]. Journal of Hazardous Materials. 100(1-3): 39-52(2003).2. Mehrdad Hashemi H I K T. Computer simulation of gas generation and transport in landfills I: quasisteady-state condition[J]. Chemical Engineering Science. 57:2475-2501(2002).

Excerpt from the Proceedings of the 2015 COMSOL Conference in Beijing