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Abstract: Mathematical Modelling has a long 
history in developmental biology. Advances in 
experimental techniques and computational 
algorithms now permit the development of 
increasingly more realistic models of 
organogenesis. In particular, 3D geometries of 
developing organs have recently become 
available. In this paper, we show how to use 
image-based data for simulations of 
organogenesis in COMSOL Multiphysics. As an 
example, we use limb bud development, a 
classical model system in mouse developmental 
biology. We discuss how embryonic geometries 
with several subdomains can be read into 
COMSOL using the Matlab LiveLink, and how 
these can be used to simulate models on growing 
embryonic domains. The ALE method is used to 
solve signaling models even on strongly 
deforming domains.  
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1. Introduction Organogenesis is a highly 
dynamic process that is tightly regulated during 
embryogenesis. Many of the individual 
regulatory components, e.g. signaling molecules 
and their receptors, as well as their regulatory 
interactions have been identified in experiments. 
However, an integrative mechanistic 
understanding of the regulatory network is 
missing [1]. Mathematical modeling has a long 
history in developmental biology [2,3]. Limb 
development, in particular, has attracted much 
attention from modellers [4]. Early models were 
rather simplistic, and to this date most models 
are still solved on idealized domains that at most 
qualitatively resemble the physiological 
domains. However, the geometry can greatly 
impact the patterning process [5], and it is 
therefore important to solve these models on 
physiological domains.  

COMSOL Multiphysics is a versatile package 
that provides finite element method (FEM)-based 
solvers to solve a wide range of partial 
differential equation (PDE)-based problems on 
complex domains. We have used COMSOL to 
solve models of limb development [5,6], bone 
development [7], ovarian follicle development 
[8], and branching morphogenesis [9,10,11]. In a 
series of papers on simulating organogenesis in 
COMSOL [12,13,14,15], we have discussed 
methods to efficiently solve models for 
organogenesis on complex static and growing 
domains as well as models, which consider cells 
explicitly. Initially, these models were 
formulated on idealized geometries. Recently, 
we have started to take advantage of 
advancements in imaging techniques, which now 
provide us with detailed imaging data of 
organogenesis [15]. This now allows us to 
simulate our models on realistically growing 
embryonic domains in COMSOL Multiphysics 
[16]. 
 
In this paper, we show how to use image-based 
data for simulations of organogenesis in 
COMSOL Multiphysics. As an example, we use 
limb bud development, a classical model system 
in mouse developmental biology. In the first 
step, computer readable geometries must be 
extracted from the 3D images and must then be 
imported into COMSOL. Many tissues contain 
clearly defined subdomains with different 
properties. These can be identified with suitable 
staining protocols for marker proteins or marker 
protein expression. We show how complex 
domains with subdomains can be imported. In a 
second step, the displacement fields between two 
consecutive image frames must be calculated and 
imported into COMSOL. Finally, the imported 
displacement fields can be used to simulate the 
domain shape evolution in COMSOL. Given the 
large number of stages that we use, we 
implement our models using Matlab LiveLink. 
We use the ALE method to solve our PDE-based 
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signaling models even on strongly deforming 
domains. The simulation results can be compared 
to experimental data, and parameter values can 
be optimized to obtain an optimal match of 
model predictions and experimental results [14]. 
We conclude that the image-based modeling 
approach allows us to build realistic models of 
highly dynamic developmental processes, and 
allows us to study the combined impacts of 
patterning and growth. 
 
2. Method 
 
2.1 Model Formulation 
 
Our models are defined as a set of n reaction-
diffusion equations in the form of:  
∂Ci

∂t
+ u∇Ci

advection
! +Ci∇u

dilution
! = DiΔCi

diffusion
! + Ri (C1,...,Cn )

reaction
! "## $##  

where Ci denotes the concentration of component 
i (n total components), Di its diffusion constant, 
andΔ  refers to the Laplace operator such that Di

ΔCi describes the diffusion flux of Ci. In case of 
growing domains, advection and dilution terms 
have to be added to the reaction-diffusion 
equations; 𝑢 represents the velocity field of the 
domain, for more details refer to [15]. The 
reaction term, Ri(C1,…,Cn), is very often non-
linear and describes all reactions of component i, 
i.e. its production, degradation, and complex 
formation. For more details refer to [12]. The 
presence of species can be restricted to parts of 
the domain, and in that case also some reactions 
can become spatially restricted.  
 
2.2 Regulatory Network  
 
To illustrate our approach, we consider a 
concrete example. Consider a domain with 3 
subdomains as shown in Figure 1, and a 
regulatory network that involves three 

components, A, B and C (Figure 2). All 
components are assumed to diffuse in the entire 
domains and to be degraded everywhere. 
Moreover, we assume that the components A and 
C are produced only in domain1 and domain3, 
respectively, whereas component B is produced 
in all domains. We formulate the sub domains 
using the unit function,

 
Ι j =

1 if (x, y)∈ domainj
0 otherwise.

#
$
%

&%  
The spatio-temporal dynamics of the aforesaid 
network can be described by the following 
reaction terms: 

RA (A,B,C) = ρA
KBA
2

KBA
2 +B2

Ιdomain1 − dAA  

RB (A,B,C) = ρB(
A2

KAB
2 + A2

KCB
2

KCB
2 +C2 )− dBB  

RC (A,B,C) = ρC
A2

KAC
2 + A

2 Ιdomain3 − dCC,
 

Figure 2. Regulatory Network. The network 
consists of three components, A, B and C. These 
components are produced and regulated in specific 
subdomains: A is produced and is inhibited only in 
domain1 (green), C is activated only in domain3 
(red), and B is activated and repressed in the entire 
domain. All components diffuse in all domains.  

Figure 1. An idealized 2D limb bud domain at two different time points. The entire domain is divided into three 
subdomains (domain1 – green, domain2 - blue, domain3 - red). The domains and subdomains deform during 
development. (A) Domain at time t, and (B) at t+1. 
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where 
Cj
2

KCjCi
2 +Cj

2  and 
KCjCi
2

KCjCi
2 +Cj

2 describe the 

activating and inhibitory actions of Cj, 
respectively. 

Initial and Boundary Conditions: The initial 
condition of A is 1.Ιdomain3 ; the initial values of 

B and C are set to zero. Zero flux boundary 

conditions, n
→
.∇Ci , are used for all 

components on the outer boundary, as the outer 
layer, the ectoderm, can be considered 
impermeable. 
 
2.3 Boundaries and Displacement Fields 
 
Using standard techniques for image 
segmentation, external and internal boundaries 
can be extracted [16]. This process can be 
repeated at different developmental time points 
to obtain a developmental sequence of shapes 
[15]. In this study, we consider the two 
geometries in Figure 1 as our extracted 2D 
geometries at two subsequent developmental 
time steps, t and t+1. As can be seen, the entire 
domain as well as the subdomains deform from t 
to t+1. 
 
To describe the growing domains, we need to 
calculate the displacement fields between the 
two shapes at t and t+1. A range of algorithms 
can be employed, which have their advantages 
and disadvantages dependent on the details of the 
geometries and their deformations (Schwaninger 
et al., submitted). Here, we use the uniform 
displacement field algorithm proposed by 
(Schwaninger et al., submitted): consider a curve 

at time t, γ t , that is deformed to γ t+1  within the 
next time step. This algorithm interpolates N 
points on both curves: 

γ t = (x1
t, y1

t ),..., (xN
t , yN

t ){ }  

γ t+1 = (x1
t+1, y1

t+1),..., (xN
t+1, yN

t+1){ }
 

such that (xi
T , yi

T ), (x j
T , yj

T )
2

 is equal for all 

i, j and T ∈ {t, t +1} . The displacement filed 
matrix, D, is defined as 
Di = xi

t, yi
t, (xi

t+1 − xi
t ), (yi

t+1 − yi
t )"# $% . For 

inner boundaries, it is important to use the 
COMSOL built-in surface-boundary parameter, 
S: every point (xi

t, yi
t )  on the curve γ t maps to 

Si and the displacement matrix is defined as
D = S, (Xt+1 − Xt ), (Y t+1 −Y t )"# $% . Figure 3 

shows the displacement fields between two 
curves at two subsequent time steps t and t+1. 
The displacement fields are imported into 
COMSOL as Interpolation function and are later 
employed in the Moving Mesh (ale) module to 
describe the domain deformation due to the 
growth.  
 
2.4 Displacement of intersecting Curves 
 
The introduction of subdomains results in 
intersecting boundary curves (Figure 1). The 
function Interpolation Curve, that we used to 
generate the boundaries, does not discriminate 
between intersection points and other points on 
the curve. All points are interpolated in the same 
way. Given the interpolation, there is no 
guarantee that the intersection point of two 
curves at time t will be accurately displaced to 
their prescribed intersection point at time t+1. 
This issue can cause distorted meshes, inverted 
meshes, and numerical problems close to the 
intersection points. In case of spatially restricted 
variables, this inaccuracy can result in leakage of 
variables out of their restricted domains. From 
here on we will refer to the model with these 
problems as Model1. 
 
To deal with this problem, we propose the 

following algorithm. Assume curve1 at time t, γ1
t

, intersects with γ2
t

at point P=(X,Y) (Figure 4A) 
such that  

γ1
t = (x1

t, y1
t ),..., (X,Y ),..., (xn

t , yn
t ){ }  

γ2
t = (X,Y ),..., (xm

t , ym
t ){ }.   

Figure 3. Displacement fields. Blue arrows show 
the displacement fields between two curves at two 
time steps, t (orange) and t+1 (red). 
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Since we want to preserve the intersection point, 

the curves γ1
t
 and γ2

t
 have to be divided into 

segments such that point P is the start/end point 

of segments. We divide γ1
t
 into two segments 

(Figure 4B) such that:
 
 

γ
1 segment1

t = (x1
t, y1

t ),..., (X,Y ){ }  

γ
1 segment 2

t = (X,Y ),..., (xn
t , yn

t ){ }  

We implemented this algorithm for all 
intersecting curves (Figure 4C) and determined 

the displacement fields for each segment 
individually. The coordinates of each segment 
and their corresponding displacement fields were 
then imported into COMSOL separately. Using 
the above algorithm, we obtain an accurate 
mapping of all domains and intersection points. 
From here on, we will refer to this model as 
Model2. 
 
3. Results 
 
Model1 and Model2 were implemented in 
COMSOL with the parameter values as given in 

Figure 4. Framework to deal with intersecting boundary curves. (A) Curve1 (green) and curve2 (red) of Figure 2 
intersect at point P. (B) To map the intersection point (blue point) at time t to the intersection point at t+1, the curves 
are divided into segments, such that the point P becomes the start/end point of the intersecting curves. (C) This 
algorithm is applied to all curves of Figure 2. Curve1 is divided into two segments; Curve3 is divided into three 
segments, whereas Curve2 has only one segment. 

C)B)A)

P P

Figure 5. The deformed domain at the final time point. All boundary points at time t are mapped to their 
corresponding points at time t+1 using the displacement field matrix D. (A-C) Final deformed domain at time t+1 
using Model1. In this case, not only the intersection points are not displaced correctly, but also their adjacent points 
are displaced improperly. (D-F) Final deformed domain at time t+1 using Model2. In this case, all intersecting curves 
are divided into segments at their intersection points (Figure 4C). The intersection points and their neighbours are 
displaced perfectly. (B,E-top) Focus on the intersection of Curve1, Curve2 and Curve3. (C,F-top) Focus on the 
intersection of Curve1 and Curve2. (B,C-bottom) Inaccuracies in the mapping of the intersection points result in 
inverted meshes close to these points in Model1. (E,F-bottom) High quality meshes close to the intersection points in 
Model2. The color bar indicates the quality of mesh elements; negative values indicate inverted meshes. 
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Table 1 in the Appendix. Figure 5A-C shows that 
in Model1 the intersection points are not 
displaced correctly. This problem leads to the 
inverted meshes close to the intersection points 
(Figure 5B,C bottom panels), and the 
subdomains are distorted (Figure 5B,C top 
panels) as compared to Figure 1B. Segmenting 
the curves at the intersection points before 
deformation (Model2) leads to a higher quality of 
mesh elements and therefore accurate numerical 
solution and correct domain deformation (Figure 
5D-F). The inverted meshes that result from 
inaccuracies in the mappings also lead to 
differences in the domain areas. Thus, Figure 6 
reports the area of domain1 and domain2 at 
different time steps. As can be seen, the final 

area in Model1 differs from the real size of the 
domain at t+1. The inverted meshes also lead to 
numerical problems and consequently inaccurate 
solutions. Thus, Figure 7 shows that the 
expression patterns, i.e. the effective spatial 
production rates, of A and C in Model1 and 
Model2 differ at time t+1. The components A 
and C have lower expression in Model1 than in 
Model2.  
 
4. Conclusion 
 
In this paper, a framework is presented to 
simulate PDE models on growing, embryonic 
domains with subdomains, using COMSOL 
Multiphysics. Intersecting boundaries are not 
mapped accurately using the standard COMSOL 
Interpolation function. We addressed this 
problem by introducing segmented boundaries.  
 
Using this algorithm and COMSOL’s Matlab 
LiveLink interface, one can implement also 
complicated domains and large sets of PDEs. 
This permits the simulation of large, complex 
regulatory networks on physiological domains. 
We expect that this will further increase the 
predictive value of the models, and will allow to 
better test, improve, and validate the models with 
experimental data. 
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7. Appendix 
 
Table 1: Non-dimensionalized Model Parameters with 

characteristic time T = 3600 sec and 
characteristic length L = 150 µm 

 
Parameter Value Description 
D  1*T Diffusion constant 
ρA  1E-4*T Production rate  

ρB  50*ρA  Production rate 

ρc  200*ρA  Production rate  

dA,dB,dC  1E-6*T Degradation rate 

KBA  0.2 Hill constant 

KAB  
0.125 Hill constant  

KCB  0.5 Hill constant 

KAC  0.025 Hill constant 

 


