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Abstract: This paper presents the study of the 
avian middle ear as a biomechanical system, 
which is typically made up of a single hearing 
ossicle, the columella. So far, only few is known 
about the functioning of the avian middle ear. To 
gain new information about the mechanical 
properties of this system, a finite element model 
was created using a viscoelastic characterization, 
for which the geometry was extracted from µCT 
scans recorded from the middle ear of a mallard 
duck. Some of the unknown model parameters 
were determined by performing an inverse 
analysis, in which the model output is compared 
with the outcome of optical interferometric 
experiments, like stroboscopic digital 
holography and laser Doppler vibrometry. As a 
result of this procedure, several parameter values 
of different middle ear structures could be found. 
 
Keywords: middle ear mechanics, finite element 
modeling, optical interferometry, inverse 
analysis. 
 
1. Introduction 
 

The avian middle ear is a peculiar 
biomechanical system that serves as an 
impedance match between incoming sound 
waves in air and acoustic waves in the inner ear 
fluid. In contrast to the mammalian middle ear, 
which contains three ossicles and a number of 
muscles and ligaments, the avian middle ear only 
contains a single ossicle, called the columella, 
one muscle and one prominent ligament (see Fig. 
1). Despite this far simpler design, birds are able 
to perceive sound signals in a frequency range 
that is almost as broad as mammals [1, 2]. 
Despite these interesting properties, the avian 
middle ear has not been given the same research 
attention as the mammalian middle ear. 

This paper presents the current state of our 
research of avian middle ear mechanics through 
stroboscopic digital holography, laser Doppler 
vibrometry (LDV) and finite element modeling. 
The model’s geometry is deduced from CT 
measurements and its parameters are optimized 

using the experimental results. The work will 
provide novel insights in the functioning of this 
mechanically simpler variant to mammal middle 
ears, and therefore have important consequences 
in the development of middle ear ossicular 
replacement prostheses. Because some of the 
current middle ear prostheses designs (such as a 
TORP - Total Ossicle Replacement Prosthesis) 
qualitatively resemble the avian middle ear [3], 
studying this system will assist in determining 
the optimal shape, parameters, material choice 
and placement of these prostheses. 
 
2. Methods 

 
2.1 Numerical Model 

 
To start with, the model's geometry was 

obtained from CT measurements at the UGCT, 
UGhent [4], performed on a segment of the left 
skull half of a dead mallard duck, with a 
resolution of 7.5 µm. In order to enhance the X-
ray contrast of different types of soft tissue, the 
sample was stained in a daily refreshed 2.5% 
PTA (Phosphotungstic acid) solution in 
deionized water for 48 hours before the scan. 
From these data, different middle ear structures 
were segmented using Amira (Visage Imaging) 
to create a surface model of the middle ear which 
is needed to create a realistic numerical model. 

Within the surface model, as depicted on Fig. 
2, five different structures could be 
distinguished: the tympanic membrane, Platner’s 
ligament, the cartilaginous extracolumella and 
the bony columella with the footplate bounded 
by an annular ligament. Other ligaments 
mentioned in literature were not observed and 
therefore not considered in the geometry. The 
final geometrical surface model, consisting of 
15000 triangle-shaped faces after decimation and 
smoothing of the surface, was exported as an 
STL-file that could be imported in finite element 
software (COMSOL Multiphysics 4.3b, The 
Structural Mechanics Module) in order to create 
a mechanical model. 
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Figure 1. Geometrical surfa
middle ear of a mallard duck, reconstructed from 

measurements. The different components and 
anatomical orientations are indicated

Finite element studies of the human middle 
ear have indicated that a viscoelastic
characterization of the soft tissue structures is 
necessary to predict the observed behavior [6
Therefore, we chose to introduce a complex 
elastic modulus with an isotropic loss factor. 
Since there are no literature values available for 
the elastic parameters of the avian middle ear, 
human and other viscoelastic material parameters 
were used as initial values instead. As explained 
in the next section, some of these parameters will 
be optimized using the experimental data. In 
table 1 starting values for d
all components are listed
were chosen isotropic.

Table 1: Starting 
finite element model

Poisson's ratios ν are taken from [7
Young's modulus E

b taken from [8]
10]. All loss factors 

coming

Component 
[kg/m³]

 1.2E3
Columella 2.2E3
Extracol. 1.2E3
Platner’s lig. 1.2E3
Annular lig. 1.2E3
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eometrical surface model of the
middle ear of a mallard duck, reconstructed from 

measurements. The different components and 
anatomical orientations are indicated

Finite element studies of the human middle 
ear have indicated that a viscoelastic
characterization of the soft tissue structures is 

predict the observed behavior [6
Therefore, we chose to introduce a complex 
elastic modulus with an isotropic loss factor. 
Since there are no literature values available for 

meters of the avian middle ear, 
human and other viscoelastic material parameters 
were used as initial values instead. As explained 
in the next section, some of these parameters will 
be optimized using the experimental data. In 

values for different parameters of 
are listed. Initially, all

sotropic. 

 material parameters 
finite element model. All mass densities 

are taken from [7
E indicated with 
]; c taken from [9

. All loss factors ηs come from [6], except for 
coming from [10].

ρ 
kg/m³] 

E 
[MPa]

1.2E3 20a 

2.2E3 1410
1.2E3 39.2b

1.2E3 21c 
1.2E3 0.0412
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ce model of the left
middle ear of a mallard duck, reconstructed from 

measurements. The different components and 
anatomical orientations are indicated [5]. 

Finite element studies of the human middle 
ear have indicated that a viscoelastic
characterization of the soft tissue structures is 

predict the observed behavior [6
Therefore, we chose to introduce a complex 
elastic modulus with an isotropic loss factor. 
Since there are no literature values available for 

meters of the avian middle ear, 
human and other viscoelastic material parameters 
were used as initial values instead. As explained 
in the next section, some of these parameters will 
be optimized using the experimental data. In 

ifferent parameters of 
Initially, all parameters 

material parameters used in the
. All mass densities ρ and 

are taken from [7]. Values for the 
indicated with a are taken from 
taken from [9] and d taken from 

come from [6], except for 
]. 

[MPa] 
ηs 

 0.078 
1410a 0d 

b 0.078 
 0.078 

0.0412a 0.078 
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The finite element model was built up by two 
types of mesh elements: 2D triangle
elements for the tympanic membrane, which are 
appropriate for thin structures, and 3D 
tetrahedral solid elements for the remaining 
middle ear components
Because shell elements are only two
dimensional, one needs a procedure to account 
for the finite and variable thickness of 
tympanic membrane. This was realized by 
defining a function on the eardrum elements that 
interpolates the thickness distribution obtained 
from the original image segmentati
shown on Fig.
mathematical framework 
still account for typical three
properties like bending stiffness and inertia.

 

Figure 2. Applied mesh in
Shell elements are used for the tympanic membrane 

and solid elements for the remaining
color

 

Figure 3. Interpolation function containing the 
thickness distribution of the tympanic membrane

which is defined on the according shell elements

 

Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge

The finite element model was built up by two 
types of mesh elements: 2D triangle
elements for the tympanic membrane, which are 
appropriate for thin structures, and 3D 
tetrahedral solid elements for the remaining 
middle ear components, as depicted in Fig. 2
Because shell elements are only two
dimensional, one needs a procedure to account 
for the finite and variable thickness of 
tympanic membrane. This was realized by 
defining a function on the eardrum elements that 
interpolates the thickness distribution obtained 
from the original image segmentati
shown on Fig. 3. Despite the two
mathematical framework of shell elements, they 
still account for typical three
properties like bending stiffness and inertia.

Applied mesh in the finite element model. 
Shell elements are used for the tympanic membrane 

and solid elements for the remaining
colors represent element quality.

Interpolation function containing the 
thickness distribution of the tympanic membrane

which is defined on the according shell elements
Fig. 2 [5]
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The finite element model was built up by two 
types of mesh elements: 2D triangle-shaped shell 
elements for the tympanic membrane, which are 
appropriate for thin structures, and 3D 
tetrahedral solid elements for the remaining 

, as depicted in Fig. 2
Because shell elements are only two
dimensional, one needs a procedure to account 
for the finite and variable thickness of 
tympanic membrane. This was realized by 
defining a function on the eardrum elements that 
interpolates the thickness distribution obtained 
from the original image segmentation data, as 

. Despite the two-dimensional 
of shell elements, they 

still account for typical three-dimensional 
properties like bending stiffness and inertia.
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To model the incident acoustic waves at the 
tympanic membrane, a uniform harmonic load of 
1 Pa was applied at the outer (i.e. lateral) surface 
of the eardrum. To account for the reflection of 
sound energy at the tympanic membrane, an 
empirically measured and frequency dependent 
power utilization ratio [11] was defined at the 
eardrum, so that only a part of the acoustic 
waves is actually transmitted to the middle ear. 
The presence of the cochlea in the inner ear 
behind the columella footplate was simulated by 
a viscoelastic spring foundation that was 
introduced at the footplate to account for the 
impedance caused by the cochlear fluid [12]. 

The tympanic membrane was fully 
constrained at the edge, as well as the annular 
ligament and the end of Platner’s ligament. To 
determine the linear response from the middle 
ear to harmonic loads, the computations were 
performed in the frequency domain. From these 
calculations the resulting displacement 
magnitude and phase over the entire eardrum 
were deduced. 

To validate the finite element model, the 
vibrating motion of the mallard middle ear was 
measured under acoustic stimulation, using both 
stroboscopic digital holography and laser 
Doppler vibrometry as experimental tools. These 
optical techniques allow us to measure the full-
field displacement and the single-point velocity 
amplitude of an object's surface respectively. 
More detail on these techniques can be found in 
previous work [5, 13]. 
 
2.2 Inverse Analysis 
 

As mentioned before, there are no avian 
middle ear properties available in literature. 
Therefore, the mechanical parameters of the 
middle ear components were validated by 
performing an inverse analysis routine in which 
the finite element model is compared with the 
experimental results. In this procedure the aim is 
to optimize the model in a certain way so that it 
approximates the experiment as well as possible. 
Therefore, an intelligently defined objective 
function is to be minimized. The objective 
function that was minimized using the 
holography measurements is defined as 

��(�) =� ������(��, �) − ����(��)�
�

�

+ �����(��, �) − ����(��)�
�

� . 
(1) 

In this equation the summation index i runs over 
the number of evaluated points on the eardrum 
surface. The ri represent the spatial coordinates 
on the eardrum and p is the set of model 
parameters to be optimized. M represents the 
magnitude normalized to 1 and ϕ the vibration 
phase in cycles (between 0 and 1). The subscripts 
‘mod’ and ‘exp’ denote model and experimental 
results, respectively. Magnitude maps were 
normalized to their respective maximal 
magnitude to prevent erroneously large values 
for the objective function. 

Using the LDV measurements as input for 
the inverse analysis instead, the objective 
function can be defined as 
 

��(�) =� �����(��, �)−����(��)�
�

�
. (2) 

In this equation V represents the velocity 
magnitude at the center of the columella. The 
summation no longer runs over the space 
coordinates ri, but over the applied stimulus 
frequencies ωi. 

The technique that is employed to perform 
the optimization is called surrogate modeling, for 
which we used the MATLAB Surrogate 
Modeling (SUMO) Toolbox, developed by 
INTEC, UGhent [14]. To operate COMSOL and 
SUMO simultaneously, we made use of the 
COMSOL LiveLink for MATLAB. The 
surrogate modeling technique creates a model of 
a certain system for which we only know the 
input and output. The software achieves this by 
first choosing a set of initial input samples, based 
on a so called Latin Hypercube Design, and 
calculating the according output. It then builds a 
model through the resulting evaluated samples 
by use of the Kriging Modeling technique. From 
the obtained model the software chooses new 
samples to evaluate in order to improve the 
current surrogate model. The way these new 
samples are chosen is done by the Local Linear 
Adaptive Sampling Algorithm (LOLA), which 
identifies nonlinear regions in the current 
surrogate model to evaluate them more densely. 
A second routine, called the Dividing Rectangles 
Algorithm, determines the current minima of the 
model and evaluates them. This procedure is 
repeated until a certain tolerance is reached or 
when a maximum number of samples have been 
evaluated. The complete workflow is 
summarized on Fig. 4. 

The parameters that are to be optimized still 
have to be chosen. This is done by the 
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3.1 Experimental Results

In order to interpret the results from digital 
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are obtained from the experiments. From this 
analysis, vibration magnitude and phase relative 
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Figure 5. Displacement magnitude and phase maps of 
the duck eardrum, extracted from digital holography 

data at different frequencies.

 

Figure 6. Velocity of the center point of the columella 
footplate, derived from LDV measure
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Displacement magnitude and phase maps of 
the duck eardrum, extracted from digital holography 

data at different frequencies.
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Model Results 

This section contains results of the inverse 
analysis on the finite element model, based on 
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for the different applied sound frequencies 
separately, and results are shown for 
frequency of 1600 Hz in Fig. 7.

Figure 7. Inverse analysis on the Young's moduli of 
the tympanic membrane (TM) and the extracolumella 
(EC) at the sound frequency
obtained by a surrogate modeling routine built with 64 

samples. Colors on the plot represent 
function between model and experiment

Figure 8. The displacement 
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