Design and Simulation of High-throughput Microfluidic Droplet Dispenser for Lab-on-a-Chip Applications

Chenghui Jin¹, Xingguo Xiong², Prabir Patra¹, Rui Zhu¹, Junling Hu³
1Department of Biomedical Engineering, 2Department of Electrical and Computer Engineering, 3Department of Mechanical Engineering,

University of Bridgeport, Bridgeport, CT, USA

COMSOL CONFERENCE 2014 BOSTON

Outline

- Introduction
 Mirofluidic biochips
 Dispenser
- * Device structure
- * Simulation
- * Result
- * Conclusion

Introduction microfluidic biochips

* Analog microfluidic biochips (AMFBs) (e.g. micropumps, microvalves, microchannels)

http://www.chromatographytechniques.com/articles/2011/12/microfluidics-evolution

 Digital microfluidic biochips (DMFBs) (e.g. EWOD)

http://pubs.rsc.org/en/content/articlelanding/2008/lc/b814922d#!divAbstract

Introduction dispenser

Device structure

The structure design of the microfluidic droplet dispenser

Simulation setup

- * COMSOL MultiPhysics 4.3.b
- * 3D Laminar Two-Phase Flow, Level Set

Meshed model of droplet dispenser

Simulation setup parameters

Table 2. Design parameters of droplet dispenser

Table 1. Fluid properties used in COMSOL simulation

Material Property	Oil (DP)	Water (CP)
Density (Kg/m ³)	1000	1000
Dynamic viscosity (mPa)	8	1.5

Design Parameter	Value
Electrode size	1mm×1mm
Channel gap d	0.1mm
Liquid-gas interfacial tension γ_{lg}	0.05N/m
Relative dielectric constant ε_r of the dielectric layer	3.27
Dielectric layer thickness t	140nm
Actuation voltage V _d	22V
Inlet flow rate	0m/s
Outlet pressure	1×10^5 Pa
Contact angle without actuation voltage	120°
Contact angle after actuation voltage	60°

Result moving

Result spliting

Result dispensing

COMSOL simulation of droplet dispenser in parallel mode

Flow rate of inlet ("total"), top port ("up") and bottom port ("down").

Dispensing parallel mode

Result dispensing

COMSOL simulation of droplet dispenser in alternate mode

Flow rate of inlet ("total"), top port ("up") and bottom port ("down").

Dispensing alternate mode

Conclusion

- The design and simulation of a microfluidic analog-to-digital droplet dispenser for Lab-on-a-Chip application is proposed.
- * The proposed droplet dispenser has multiple digital output ports. This allows multiple droplets to be dispensed at the same time.
- COMSOL simulation is used to understand the mechanism of dispensing and verify the function of the device.

Thank you

(b). (B-B') section view (c). (A-A') cross-setion view **Figure 4.** Mechanism of droplet splitting [10]