

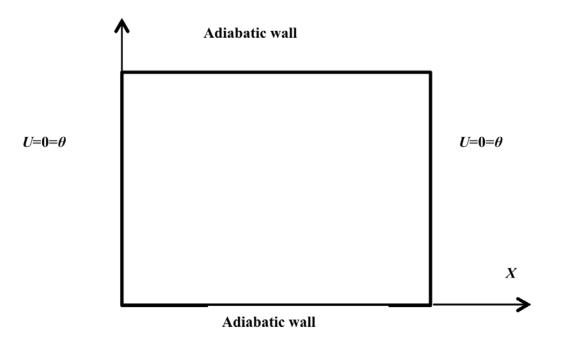
Numerical Investigation of Heat Transfer of Aluminum Metal Foam Subjected to Pulsating flow

A. Bayomy and M. Z. Saghir Ryerson University, 350 Victoria St, Toronto, Canada

COMSOL CONFERENCE 2014 BOSTON

October 9, 2014

Objectives


• To investigate whether nanofluids enhance the heat extraction

• To study numerically the heat transfer characteristics of using aluminum metal foam (porous media) as heat sink of electronic devices surface subjected to both steady and pulsating air flow and then nanofluids.

Nanofluids

- Nanofluids are engineered colloids= base fluid(water or any other liquid)+nanoparticles.
- Nanoparticles materials:Oxides(Al₂O₃, ZrO₂,SiO₂,Fe₃O₄), Stable metals (Au, Cu), Carbon(fullerene),Polymers (Teflon)
- Particle size is small(1-100 nm)
- High surface to volume ratio(High energy and mass transfer rates)

Finite element model

Nanofluid: Water-Al₂O₃

$$\frac{\mu_{nf}}{\mu_{bf}} = 1 + 4.93c_v + 222.4c_v^2$$

$$\rho_{nf} = c_v \rho_p + (1 - c_v) \rho_{bf}$$

$$\rho_{nf}\beta_{nf} = (1 - c_v)\rho_{bf}\beta_{bf} + c_v\rho_p\beta_p$$

$$\frac{k_{nf}}{k_{bf}} = 1 + 2.944c_v + 19.672c_v^2$$

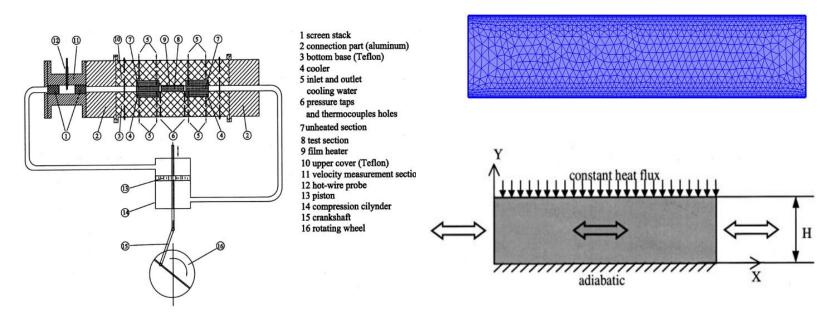
$$\rho_{nf}Cp_{nf} = c_v \rho_p Cp_p + (1 - c_v) \rho_{bf} Cp_{bf}$$

Cv	Rayleigh number	gh number Prandtl number	
1%	7.74547e7	7.0659	
2%	6.6751180e7	7.3593	
3%	5.6020687e7	7.8353	

Nanofluid: Water-Al₂O₃(cont'd)

Physical properties	c _v =1%	c _v =2%	c _v =3%
μ_{nf} (Kg/m/s)	1.07368e-3	1.19e-3	1.3508e-3
$\rho_{\rm nf}$ (Kg/m ³)	1024.317	1050.334	1076.3510
$\rho_{nf}\beta_{nf}$ (Kg/m ³ /K)	0.20489	0.2031	0.2013
k_{nf} (KJ/m/K/s)	0.61678e-3	0.6379e-3	0.6614e-3
$\rho_{nf}Cp_{nf}$ (Kg.KJ/m ⁴ /K/s)	4157.7176	4143.5378	4129.3588

Physical properties for water		Physical properties for Al ₂ O ₃	
μ_{bf} (Kg/m/s)	1.002e-3	$\rho_p (Kg/m^3)$	3600
$\rho_{\rm bf}$ (Kg/m ³)	998.3	$\beta_{\rm p}$ (1/K)	8.46e-6
$\beta_{bf}(1/K)$	0.207e-3	Cp _p (KJ/Kg/K)	0.765
$K_{bf}(KJ/m/K/s)$	0.598e-3		
Cp _{bf} (KJ/Kg/K)	4.179		

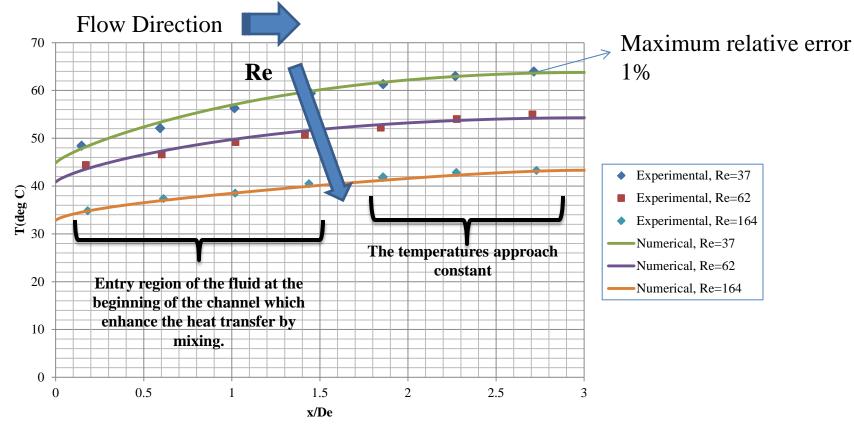

Nanofluid: Water-Al₂O₃(cont'd)

$$\overline{Nu_{nf}} = 0.069 * \left(\frac{Pr_{nf,h}}{Pr_{nf}}\right)^{0.333} * \left(\frac{\beta_{nf,h}}{\beta_{nf}}\right)^{0.404}$$

Cv	Average Nu _{exp}	Average Nu _{num}
1%	32.2037	31.8633
2%	31.0905	31.6085
3%	29.0769	31.2101

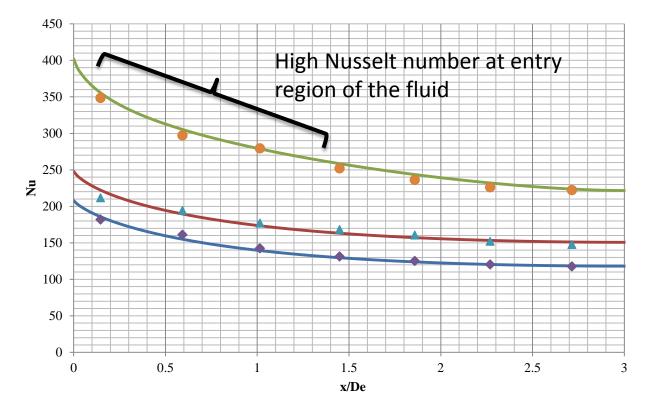
(h_{nf}/h_{bf})	Ranf=3.8727e7	Ra _{nf} =7.74547e7	Ranf=12.9947e7	Ranf=17.3263e7
c _v =1%	1.0313	1.0307	1.0306	1.0304
(hnf/hbf)	Ra _{nf} =3.3376e7	Ra _{nf} =6.675118e7	Ranf=10.0127e7	Ra _{nf} =13.3504e7
c _v =2%	1.0588	1.0575	1.0571	1.0568
(hnf/hbf)	Ra _{nf} =2.8010e7	Ra _{nf} =5.6020687e7	Ra _{nf} =8.4031e7	Ra _{nf} =11.2041e7
c _v =3%	1.0847	1.0826	1.0818	1.0814

Model Description

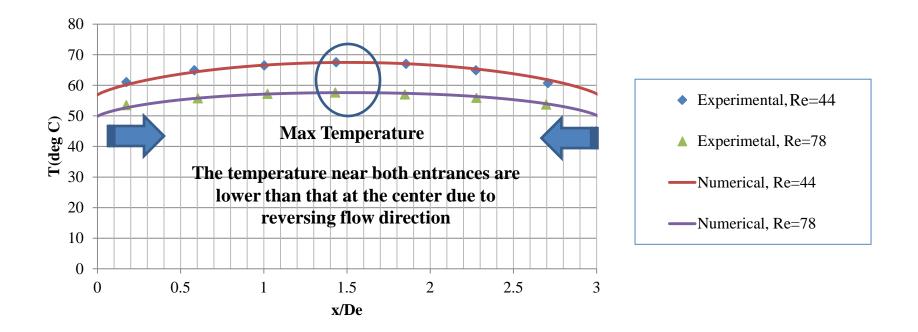


Schematic diagram of the experimental facility presented by Fu et al. [3]

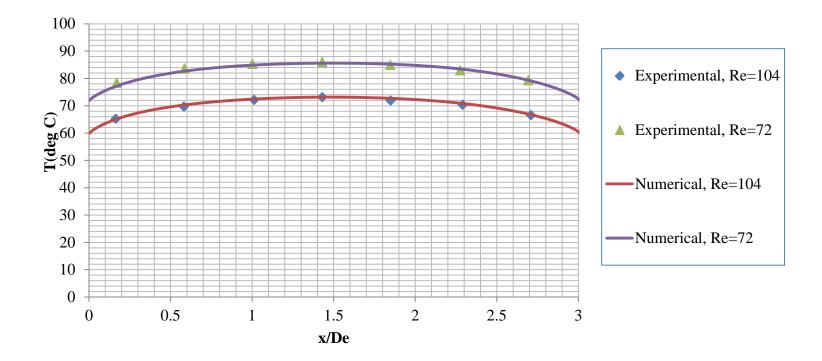
COMSOL model


Results

• Time average local temperature distribution for steady flow at 0.8 W/cm²


Results (cont'd)

• local Nusselt number distribution for steady flow at 0.8 W/cm^2


Results(cont'd)

• Time average local temperature distribution for **Pulsating flow** at 0.8 W/cm^2

Results(cont'd)

• Time average local temperature distribution for **Pulsating flow** at 1.6 W/cm^2

Conclusions

• For steady flow the local average temperature distribution along heated surface increases with increasing the dimensionless axial position and decreasing the Reynolds number

• For pulsating flow the local temperature distributions acts as convex curve with a maximum point at the center

•The pulsating flow achieves more temperature uniformity than steady flow