Effective Mass Calculations Using COMSOL Multiphysics[®] for Thermomechanical Calibration

B.D. Hauer, C. Doolin, K.S.D. Beach, and J.P. Davis, Annals of Physics 339, 181 (2013)

Nano/Micro-Mechanical Sensors

Yoctogram (10⁻²⁴ g) mass resolution

J. Chaste *et al.*, Nature Nanotech. **7** (2012) 301 Attonewton (10⁻¹⁸ N) force transduction

E. Gavartin *et al.*, Nature Nanotech. **7** (2012) 509

Sub-attometer (10⁻¹⁹ m) displacement sensitivity

O.Arcizet et al., PRL 97 (2006) 133601

Thermomechanical Calibration

Proper calibration of a resonator is crucial to ensure accurate measurements. Thermomechanical calibrations provides a powerful, noninvasive calibration by which the thermal motion of any resonator structure can be calibrated.

Equipartition Theorem: $\langle U \rangle = \frac{1}{2}m\omega^2 \langle z^2 \rangle = \frac{1}{2}k_B T$

Extended Resonator Structure

General Displacement

$$\boldsymbol{R}(\boldsymbol{x},t) = \sum_{n} a_{n}(t) \, \boldsymbol{r}_{n}(\boldsymbol{x})$$

 $|\boldsymbol{r}_n(\boldsymbol{x}_0)| = 1$

 x_0 is the position of the measurement $a_n(t)$ is the true physical displacement

Extended Resonator Structure

General Displacement

$$\boldsymbol{R}(\boldsymbol{x},t) = \sum_{n} a_{n}(t) \, \boldsymbol{r}_{n}(\boldsymbol{x})$$

 $|\boldsymbol{r}_n(\boldsymbol{x}_0)| = 1$

 x_0 is the position of the measurement $a_n(t)$ is the true physical displacement

Potential Energy

$$dU = \frac{1}{2}\omega^2 |a_n(t)\mathbf{r}_n(\mathbf{x})|^2 \rho(\mathbf{x}) dV \implies U = \frac{1}{2}m_{eff}\omega^2 |a_n(t)|^2$$

Effective Mass Integral (EMI)

$$m_{eff} = \int \rho(\boldsymbol{x}) |\boldsymbol{r}_n(\boldsymbol{x})|^2 dV$$

Device Geometry	Effective Mass Ratio
	(m _{eff} / m)
Cantilever	I/4
Doubly Clamped Beam	Mode Dependent
String	I/2
Simple Torsional Resonator	I/3
Circular Membrane	Mode Dependent
Rectangular Membrane	I/4

Effective Mass Integral (EMI)

$$m_{eff} = \int \rho(\boldsymbol{x}) |\boldsymbol{r}_n(\boldsymbol{x})|^2 dV$$

Device Geometry	Effective Mass Ratio		
	1)	n _{eff} / m	ו)
Cantilever		1/4	
Doubly Clamped Beam	0.3965	0.4390	0.437I
String		I/2	
Simple Torsional Resonator		1/3	
Circular Membrane	0.2695	0.2396	0.2437
Rectangular Membrane		1/4	

Complex Devices

Bottle Resonator

Bradley Hauer - COMSOL Conference Boston 2013

EMI Calculations Using COMSOL

Recipe:

- Simulate the mechanical deformation of the device for the mode of interest using the Eigenfrequency Study in the Structural Mechanics Module.
- 2. Determine the relative displacement at the point of measurement using Point Evaluation in Derived Values.
- 3. Perform a Volume Integration of the structure's density multiplied by the normalized displacement solid.rho*(solid.disp/pointdisplacement))^2 over the entire geometry of the resonator.

Results – Benchmark Calculations

Device Geometry	Effective Mass Ratio (Analytical)	Effective Mass Ratio (COMSOL)
Cantilever	0.2500	0.2498 (0.08%)
String	0.5000	0.4969 (0.62%)
Torsional Resonator	0.3333	0.3314 (0.58%)
Doubly Clamped Beam (First Mode)	0.3965	0.3959 (0.15%)
Circular Membrane	0.2696	0.2693 (0.11%)
Rectangular Membrane (First Mode)	0.2500	0.2498 (0.08%)

Complex Devices

Bottle Resonator

Complex Devices

Bottle Resonator

Conclusion

- Thermomechanical calibration provides a powerful, noninvasive method by which nano/micro-mechanical resonators can be calibrated.
- In order to ensure accurate calibration, the effective mass of a device must be precisely known.
- COMSOL Multiphysics[®] simulation can be used to determine the effective mass of any resonator, regardless of material or geometry, providing a straightforward method by which any nano/micromechanical resonator can be calibrated.

B.D. Hauer, C. Doolin, K.S.D. Beach, and J.P. Davis, Annals of Physics 339, 181 (2013)

Thank you

Bradley Hauer - COMSOL Conference Boston 2013