Design and Simulation of 3D MEMS Piezoelectric Gyroscope using COMSOL Multiphysics® T.Madhuranath, R.Praharsha, and Dr.K.Srinivasa Rao LBR College of Engineering, Electronics an instrumentation Engineering, Mylavaram-521230, A.P, India.

Introduction: Tracking the position of an object is an important engineering problem that finds many application areas including military, industrial, medical, and consumer applications. This problem is effectively solved with gyroscopes. This paper presents a piezoelectric gyroscope with a proof mass packed between piezoelectric slabs in all directions. Fig 1 shows our design of MEMS piezoelectric gyroscope.

Results: The deformation in the different piezoelectric slabs depends on angular displacement of the body, Eigen frequency analysis is done to inspect the deformation and potential

generated in the piezoelectric slabs

Figure 3. Deformation in piezoelectric slab **Figure 4**. Potential generated

MaterialMaxPotentialapplied fordeformationgeneratedthe proof

Figure 1. Design of piezoelectric gyroscope

Computational Methods: When the body is oriented from its position the angular displacement is measured by comparing the force exerted on each piezoelectric slabs. The physics interfaces that we used are piezoelectric devices and solid mechanics.

mass		
Structural	50x10^-7um	0.018V
steel		
Platinum	25x10^-6um	0.083V

 Table 1. Simulation results

Conclusion: MEMS technology exploits the existing microelectronics infrastructure to create complex machines on a micrometer scale. Extensive applications for these devices are Tracking the position of an object, military, industrial, medical,

Figure 2. Working of gyroscope

consumer applications and perfect for gaming.

References:

S. E. Alper, Silicon Surface Micromachined Gyroscopes Using MEMS Technology, *M.S. Thesis, Middle East Technical Univ., 2000*G. He and K. Najafi, "A Single-Crystal Silicon Vibrating Ring Gyroscope," *Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS'02), pp.* 718-721, January 2002.
B. Guldimann, P. Thiebauld, N. F. de Rooji, and R. A. Turpin, "Micromachined, Fiber-Optic Based Accelerometer with Shutter Modulation,"

Proc. IEEE Micro Electro Mechanical System Workshop (MEMS'00), 2000.

Excerpt from the Proceedings of the 2013 COMSOL Conference in Bangalore