Modeling of MEMS Based Bolometer for Measuring Radiations from Nuclear Power Plant

By S.Nisitha & S.Sreeja

National MEMS Design Center(NMDC) **LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING**(AUTONOMOUS)

Contents

- > Introduction
- Designing
 - COMSOL software tool
 - Geometry details
 - Addition of materials
 - Physical interfaces
- > Simulation
- > Results and analysis
- > Conclusion

Introduction

- Bole- ray.
- It is thermal infrared sensor that measures the power of incident radiations.
- Types
 - Resistive
 - Hot electron
 - Micro bolometer
- Working principle Thermal expansion of materials.

Designing

COMSOL software tool

- The software package selected is COMSOL MultiPhysics 4.3 a.
- Powerful interactive environment for modeling of various devices
- Four fundamental steps for designing using COMSOL software
 - (1) Defining Geometry
 - (2) Adding Materials
 - (3) Adding Physical Interfaces
 - (4) Meshing, Simulation

Geometry details

- Width of the substrate-100μm
- Depth of the substrate- 100μm
- Height of the substrate- 11μm
- Width of the metal plate- 45μm
- Depth of the metal plate- 20μm
- Height of the metal plate- 1μm
- Width of the copper link- 10μm
- Depth of the copper link- 20μm

- Height of the copper link- 13μm
- Width of the central support-20μm
- Depth of the central support20μm
- Height of the central support20μm

Figure 1: Designed model of bolometer

- Initially base of width 100μm, depth 100μm and height 11μm is built.
- Central support of width 20μm, depth 20μm, and height 20μm is built at the centre of the base.
- Two links of width 10μm, depth 20μm and height 13μm is built on the edges of the base.
- Two metal plates of width 45μm, depth 25μm and height 1 μm are built on either sides of the central support.
- Finally the union of 8 blocks is formed.

Addition of materials

- Silicon -base and central support.
- Copper- two links.
- Aluminum, Tungsten-plates.

Figure 2: Structural details of bolometer

Property	Value
Thermal conductivity	160[W/mK]
Heat capacity	900[J/kg×K]
Coefficient of thermal	23M[1/K]
expansion	
Heat Density	2700[Kg/m ³]

Property	Value
Thermal conductivity	173[W/mK]
Heat capacity	1340[J/kg×K]
Coefficient of thermal	4.5M[1/K]
expansion	
Heat Density	17800[Kg/m³]

Table 1:Thermal properties of aluminium

Table 2: Thermal properties of tungsten

Physical interfaces:

- This model is carried out based on:
 - Joule heating and
 - Thermal expansion
- Facilitates for coupling of thermal, electrical and structural analyses.
- Relates the change in a material's linear dimensions to a change in temperature

Simulation

 After design process, the proposed bolometer has been simulated to study the pressure distribution.

Figure 3: Pressure Distribution(front view)

Figure 4: Pressure Distribution (side view)

Results and analysis

- Aluminium plate deforms and touches the copper link.
- Maximum stress found to be 7.9435 x 10⁻⁷ N/m^{2.}
- This changes the resistance of the absorptive element.
- Increase in pressure, increases the deformation of metal plate.
- Thus the deformation occurs in metal plate causes change in resistance due to change in temperature.
- By measuring the change in resistance of the metal one can determine the intensity of the incident radiation

Conclusion

- Resistive micro bolometer has been designed using COMSOL 4.3 a. Specifically. the stress distribution across aluminium metal surface is studied.
- The maximum stress is found to be 7.9435×10^{-7} N/m².
- These studies would be useful in making of bolometers that prevent the people from powerful radiations.

References

- Frank Niklaus, Christian Vieider, Henrik Jakobsen MEMS-Based Uncooled Infrared Bolometer Arrays – A Review.
- Bernard L. Cohen, Sc.D. Professor at the University of Pittsburgh Risks of Nuclear Power.
- 3. R. Reichle, T. Nishitani, E.R. Hodgson, L.C. Ingesson, E. Ishitsuka, S. Kasai, K.F. Mast, T. Shikama, J.C. Vallet, S. Yamamoto, Radiation hardness test of mica bolometers for ITER in JMTR, in: 28th EPS Conference on Contr. Fusion and Plasma PhysFunchal, 2001.

Queries.