Electrohydrodynamic Micropump Modeling for Performance Optimization

Ameya Mulye¹, Sahil Potnis^{*2} ¹Northeastern University, ² University of Mumbai

COMSOL CONFERENCE BANGALORE2013

PUMP PRINCIPLE & MECHANISM

Electrohydrodynamic pumps

$$F = qE + P \cdot \nabla E - \frac{1}{2}E^2 \nabla \varepsilon + \frac{1}{2} \nabla \left(E^2 \rho \left(\frac{\partial \varepsilon}{\partial \rho} \right)_T \right)$$

Ion-drag principle

Mechanism of the pump

BENEFITS OF EHD MICROPUMP

- Robust design
- No moving parts
- Easy to fabricate
- Miniature design
- Low power consumption

Model Prototype

Modules Used:

- I. AC/DC
- 2. Fluid flow
- 3. Structural Mechanics
- 4. Heat Transfer

Building Geometry in COMSOL

E	С	S	D
20um	10um	20um	80um

SIMULATIONS & RESULTS

• Joule Heating results on Si-Au pair

Electrical	Operating	Low temperature	High temperature
Conductivity of water	Voltage	limit (K)	limit (K)
	(V)		
σ= 5.5e0	5	295.41	2727.4
	10	303.08	435.19
	20	336.17	896.75
	40	436.61	2727.4
σ= 5.5e-4	20	289.03	296.31
	40	287.48	297.75
	80	291.09	326.95
σ= 5.5e-6	40	287.27	297.7
_	200	291.96	465.23
σ= 5.5e-8	80	291.26	326.98
	200	291.26	326.98
σ= 5.5e-16	200	291.26	326.98

SIMULATIONS & RESULTS

• Electric Field Results

Figure showing increase in Potential gradient

Variation in the Electric field created

Higher Limit of Electric field : 8.43×10^{12} V/m Lower Limit of Electric field : 8.43×10^{6} V/m

Fluid Flow & Pressure contour

ANALYTICAL CALCULATION OF INLET VELOCITY

Maximum Velocity Obtained – 8.29m/s Minimum Velocity Obtained – 0.0082m/s

Varied Metal Thickness results

Au thickness – 10 uM with V= 10v and σ =5.5

For Au thickness – 5uM with V= 10v and σ =5.5 T_{low} =303.08 K T_{high} =435.19 K

• OPTIMIZED DESIGN OF THE PUMP

- To maximize the electric field at every point
- Thickness of the electrode
- Operating voltage range
- Fabrication of the substrate
- Current density on the electrode

Bio-MEMS and MEMS analysis systems

Drug delivery

On chip cooling

REFERENCES

- On-Chip Liquid Cooling With Integrated Pump Technology, Herman Oprins et al., Student Member, IEEE.
- Introduction to microelectronic fabrication: R. C. Jaeger.
- An Electrohydrodynamic Micropump for On-Chip Fluid Pumping on a Flexible Parylene Substrate by Chia-Ling Chen et al., Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems January 16 - 19, 2007, Bangkok, Thailand.
- Micro and Nano Fabrication Laboratory Manual ECE 5606 by Erfan Kheirkhahi,Yu Hui and Matteo Rinaldi, Kostas Center, Spring 2013.
- Electrohydrodynamic Micropump powerpoint presentation by Matteo Rinaldi.
- Micro Electrohydrodynamic Pump Driven by Traveling Electric Fields by Jin-Woo Choi and Yong-Kweon Kim.
- DESIGN AND CHARACTERIZATION OF AN ELECTROHYDRODYNAMIC (EHD) MICROPUMP FOR CRYOGENIC SPOT COOLING APPLICATIONS by Parisa Foroughi, Doctor of Philosophy, 2008
- EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF PLANAR ION DRAG MICROPUMP GEOMETRICAL DESIGN PARAMETERS Vytenis Benetis, Doctor of Philosophy, 2005.

ACKNOWLEDGEMENTS

- Facility at Northeastern University, Boston, USA.
- Prof. Rinaldi, Northeastern University for concepts on fabrication technologies and subsequent assistance.

THANK YOU...

