Application of Focused Impedance Method (FIM) to Determine the Volume of an Object within a Volume Conductor

M Abdul Kadir, Syed Parvez Ahmed¹, Golam Dastegir Al Quaderi², Rubina Rahman¹ and K Siddique-e Rabbani

Department of Biomedical Physics & Technology, University of Dhaka, Dhaka-1000, Bangladesh

¹Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh ²Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh

Investigating an organ inside the body

Tool: Knife

Surgery

Investigating an organ inside the body

Tool: Radiation

Property:
Interaction of radiation with matter

Investigating inside the body

Tool: Ultrasound

Property: Reflection and transmission from an interface

Investigating inside the body

Tool: Magnetic filed

Property: nuclear magnetic resonance

Investigating inside the body What about using *electric field*?

Property: volume, position, conductivity, permittivity

Can we use electrical impedance to determine volume of an embedded object?

Electrical Impedance Technique

Transfer Impedance, Z=V/I

Sensitivity

The extent to which a change in conductivity of a point within the volume conductor contributes to the measured transfer impedance

$$Sensitivity = \frac{J_1.J_2}{I^2}$$

Tetra-polar Electrical Impedance Method

Sensitivity at depth 2cm, using COMSOL

Electrode separation:

drive: 14cm, receive: 7cm

Tetrapolar Sensitivity =
$$\frac{J_{ec}.J_{ec2}}{I^2}$$

- Sensitive zone is wide
- can not focus a particular organ
- Has large negative sensitivity

Focused Impedance Method (FIM)

Sensitivity at depth 2 cm using COMSOL

- Electrodes placed at the corners of a square
- Electrode separation 7 cm

$$FIM \ Sensitivity = \frac{J_{ec}.J_{ec2} + J_{ec3}.J_{ec4}}{I^2}$$

- Sensitive zone *focused*
- can focus a particular organ
- Reduced negative sensitivity

Materials and Methods

Sequence 1	Sequence 2	
Drive: A B (I amp)	Drive: A C (I amp)	
Receive: C D (V ₁ volt)	Receive: B D (V ₂ volt)	

- A cubic tank of edge 30 cm filled with saline was modeled as a volume conductor in COMSOL Multiphysics with electrodes placed on one of the sides, centrally
- Drive current introduced using electric current interface of AC/DC module in COMSOL Multiphysics
- Resulting voltage measured using boundary probes

Focused Impedance,
$$FZ = \frac{V_1}{I} + \frac{V_2}{I}$$

Results and Observations

Relation between FZ and ES

- Focused Impedance FZ decreases with increasing Electrode Separation ES
- ➤ The decrease is rapid in the segment between ES₁ and ES₂ in the curve
- > The decrease is more rapid for object having larger volume

We define
$$S = \frac{|\Delta FZ|}{ES_2 - ES_1}$$
----(1)

Any relation between S and the object volume V?

The parameter *S* is linearly proportional to the object volume *V*.

$$S = AV + C$$
 ----(2) when d is constant

Any relation between **A** and the object depth **d**?

The slope A is inversely proportional to the depth d.

$$A = \frac{K}{d} + B$$
----- (3) when V is constant

Combining all

$$S = \left(\frac{K}{d} + B\right)V + C - (4)$$

$$V = \frac{S - C}{\frac{K}{d} + B} \quad ----(5)$$

$$S = \frac{\left|\Delta FZ\right|}{ES_2 - ES_1}$$

Constants:

K = 159536, B = -2211400, C = 252.118

Volume *V* can be obtained by measuring FZ at two electrode separations if depth *d* and the values of the other constants are determined through experimental procedures.

Verification

$$V = \frac{S - C}{\frac{K}{d} + B} \quad ----(5)$$

Comparison of the actual object volume to the calculated volume from simulated FIM measurements taken in the COMSOL model

Simulated Radius	Depth	Calculated Radius	% error
m	m	m	
0.030	0.045	0.03002	0.07
0.025	0.035	0.02489	0.44

Volume of the object can be obtained with an error less than 1%.

Conclusion

- The present work has put forward a new technique for measurement of the volume of an object embedded within a volume conductor using 4-electrode FIM
- COMSOL Multiphysics simulation allowed development of this method.
- Verification carried out using COMSOL simulation as well as in practical phantom
- Next: verification inhomogeneous volume conductor and then in human body
- FIM is noninvasive, non ionizing

The new technique for volume measurement using FIM will have applications in many areas in Biomedical Physics & Engineering, in Geology

Thank You