### COMSOL CONFERENCE ROTTERDAM2013



### UNIVERSITY<sup>OF</sup> BIRMINGHAM



# Modelling of a 5 Cell IT-PEFC Stack

### Amrit Singh Chandan - <u>a.s.chandan@pgr.bham.ac.uk</u> Arvin Mossadegh Pour – <u>axm357@bham.ac.uk</u>

### PEFCs



### Introduction

Design an MEA that Operates at 120°C Lowers BoP requirements Be highly durable

> Long Lasting High Efficiency High Power





# Flow Fields



## **Gas Diffusion Layers**

### Conventional Carbon



Metallic Foam

### The Model



### The Model



## The Model



a) Conventional Stack Design

b) Novel Stack Design



Velocity

Velocity / m/s



24/10/2013

9

### Pressure





### Temperature

#### UNIVERSITY<sup>OF</sup> BIRMINGHAM

Temperature / K

▲ 392.99



A - Conventional Flow Field/GDL



y z x

## Conclusions

Integrated flow field/GDL:

Improved flow characteristics

- Simplified thermal management
- Increased system efficiency
- Simpler system management

### Future Work

Integrated flow field/GDL

- Optimisation of stack flow
- Optimisation of stack gas manifold
- Optimisation of stack cooling

Further investigation into electrochemical importance of the GDL

# Acknowledgements

- Professor Robert Steinberger-Wilckens
- Dr Neil Rees
- John Geoffery Maillard VI RotE OGL
- Scott Hardman
- Vikrant Venketaraman
- PEFC group
- Dr Edmund Dickinson (Comsol support)
- EPSRC
- RCUK
- Advantage WM



### UNIVERSITY<sup>of</sup> BIRMINGHAM



Engineering and Physical Sciences Research Council

> Birmingham Science City ideasforlife



UNIVERSITY<sup>of</sup> BIRMINGHAM





# **Thank You For Listening!**

Any Questions?

### Amrit Singh Chandan A.S.Chandan@pgr.bham.ac.uk

**Comsol Conference**