
CO2 Storage Trapping Mechanisms 
Quantification 



CO2 storage 

• The capture and storage of CO2 in deep geological 

formations is one of the proposed solutions to reduce 

CO2 emissions to the atmosphere.  



CO2 storage 

• CO2 is injected as a supercritical fluid deep below a 

confining geological formation that prevents its return 

to the atmosphere.  



CO2 storage 

• Four trapping mechanisms are expected, which are of 

increasing importance through time (1) structural, (2) 

residual saturation, (3) dissolution, and (4) mineral 

trapping. 
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CO2 storage 

• The prediction of the mass of CO2 stored through time 

in storage systems is an essential parameter in the pre-

injection assessment of a geological storage. For safety 

reasons, it is relevant to know the mass of CO2 trapped 

under these different trapping mechanisms.  



Objective 

• Identify and quantify the different Co2 trapping 

mechanisms in a saline aquifer 



𝜕𝑡 𝜙𝑠𝛼𝜌𝛼𝑚𝛼
𝜅𝑀𝜅 = 

    −𝛻 𝒒𝜶𝜌𝛼𝑚𝛼
𝜅𝑀𝜅 − 𝜙𝑠𝛼𝜌𝛼𝑫𝜶𝛻 𝑚𝛼

𝜅𝑀𝜅 + 𝑄𝛼
𝜅 + 𝑇𝛼

𝜅  

        
 𝛼 = 𝑙, 𝑔 𝜅 = 𝐶𝑂2, 𝑤  

mass species conservation 

𝒒𝜶 = −
𝑘𝑘𝑟,𝛼
𝜇𝛼

𝛻𝑝𝛼 − 𝜌𝛼𝒈  

Darcy’s law 

Mathematical description 



co
n

st
it

u
ti

ve
 r

e
la

ti
o

n
s 

sum of phase 

saturations 
𝑠𝑔 + 𝑠𝑙 = 1 

pressure equilibria 𝑝𝑐 = 𝑝𝑔 − 𝑝𝑙 

effective saturation 𝑠𝑒 =
𝑠𝑙 − 𝑠𝑙

𝑟
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capillary pressure 𝑝𝑐 = 𝑝𝑡𝑠𝑒
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permeability 𝑘𝑔
𝑟 = 1 − 𝑠𝑒

2 1 − 𝑠𝑒
2+𝜔
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Mathematical description [1] Brooks, R. H. & Corey, A. T., 1964. 
Hydraulic properties of porous media. 
Hydrology Papers, Colorado State 
University, Issue March. 



volume 𝑉𝑔 = 𝑉𝑔 𝑝𝑔, 𝑇,𝑚𝑙
𝐶𝑂2 , 𝑚𝑠

𝑁𝑎𝐶𝑙  

phase 

composition 
𝑚 𝑙

𝐶𝑂2 = 𝑚 𝑙
𝐶𝑂2(𝑝𝑔, 𝑇, 𝑉𝑔, 𝑚𝑠

𝑁𝑎𝐶𝑙) 

density 𝜌𝑔 =
𝑀𝐶𝑂2

𝑉𝑔
 

viscosity 𝜇𝑔 = 𝜇𝑔 𝑝𝑔, 𝑇,𝑚𝑙
𝐶𝑂2 , 𝑚𝑠

𝑁𝑎𝐶𝑙  

enthalpy ℎ𝑔 = ℎ𝑔 𝑝𝑔, 𝑇,𝑚𝑙
𝐶𝑂2 , 𝑚𝑠

𝑁𝑎𝐶𝑙  
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Mathematical description 

[2] Spycher, N. & Pruess, K., 2005. CO2-H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12--
100°C and up to 600 bar. Geochimica et Cosmochimica Acta, 69(13), pp. 3309-3320. 
[3] Nickalls, R., 1993. A new approach to solving the cubic: Cardan's solution revealed. The Mathematical Gazette, pp. 354-359. 
[4] Altunin, V. & Sakhabetdinov, M., 1972. Application of orthogonal expansions to construct a single equation of state for substances on 
the basis of various experimental data by means of a digital computer(Orthogonal polynomials for computerized construction of 
equations of state for substances under thermodynamic restrictions). Teplofizika Vysokikh Temperatur, Volume 10, pp. 1195-1202. 
[5] Redlich, O. & Kwong, J., 1949. On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions.. 
Chemical Reviews, 44(1), pp. 233-244. 



density 𝜌𝑙 = 𝜌𝑙 𝜌𝑏 , 𝜌𝐶𝑂2
 

  𝜌𝑏 = 𝜌𝑏 𝑝𝑙 , 𝑇,𝑚𝑙
𝐶𝑂2 , 𝑚𝑠

𝑁𝑎𝐶𝑙  

  𝜌𝐶𝑂2
= 𝜌𝑏 𝑝𝑙 , 𝑇,𝑚𝑙

𝐶𝑂2 , 𝑚𝑠
𝑁𝑎𝐶𝑙  
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Mathematical description 

[6] Garcia, J. E., 2001. Density of aqueous solutions of CO2.  
[7] Haas, J., 1976. Physical Properties of the Coexisting Phases and Thermochemical Properties of the H2O 
Component in Boiling NaCl Solutions. USGS Bulletin 1421-A, Washington, DC, p. 73. 
[8] Phillips, S. L. et al., 1981. A technical databook for geothermal energy utilization. s.l.:Lawrence Berkeley 
Laboratory, University of California. 
[9] Pruess, K., 2005. ECO2N: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Lawrence 
Berkeley National Laboratory Report LBNL-57592, Berkeley, CA. 



Formulation used 

In this work it will be assumed that water miscibility in gas phase is negligible (𝑚𝑔
𝑤 =

0). This is quite reasonable since water dissolution is on the order of tan per mil 
(Spycher & Pruess, 2005). These restricts the system Eq.[1] to three equations.  
 
For the derivation of the equations notice the following relationships: 
 

 𝑀𝑐𝑚𝛼
𝑐

𝑐=𝐶𝑂2,𝑤 = 1      

 
 𝑇𝛼

𝑐
𝛼=𝑙,𝑔 = 0        

   

 𝑄𝛼
𝑐

𝑐=𝐶𝑂2,𝑤 = 𝑄𝛼  

 



Formulation used 

The linear combination of the three equations done is the following. A total mass 
conservation  
 
Eq.[a] is obtained by summing over all the phases and components.  

𝜕𝑡 𝜙𝑠𝑙𝜌𝑙 + 𝜙𝑠𝑔𝜌𝑔 = −𝛻 𝒒𝒍𝜌𝑙 + 𝒒𝒈𝜌𝑔 + 𝑄𝑔 + 𝑄𝑙  [a] 

 
A CO2 equation mass conservation Eq.[6b] is obtained by summing the Co2 chemical 
component equations over the two phases.  

𝜕𝑡 𝜙𝑠𝑙𝜌𝑙𝑚𝑙
𝐶𝑂2𝑀𝐶𝑂2 + 𝜙𝑠𝑔𝜌𝑔 = −𝛻 𝒒𝒍𝜌𝑙𝑚𝑙

𝐶𝑂2𝑀𝐶𝑂2 + 𝒒𝒈𝜌𝑔 − 𝜌𝑙𝑫𝒍𝛻 𝑚𝑙
𝐶𝑂2𝑀𝐶𝑂2  

+𝑄𝑔
𝐶𝑂2 + 𝑄𝑙       [b] 

Finally, subtracting the equation Eq.[6a]  times 𝑚𝑙
𝐶𝑂2𝑀𝐶𝑂2  to the liquid-CO2 equation we 

find Eq.[6c]: 

𝜙𝑠𝑙𝜌𝑙𝜕𝑡 𝑚𝑙
𝐶𝑂2𝑀𝐶𝑂2 −𝑚𝑙

𝐶𝑂2𝑀𝐶𝑂2𝜕𝑡 𝜙𝑠𝑔𝜌𝑔 = 

−𝒒𝒍𝜌𝑙𝛻 𝑚𝑙
𝐶𝑂2𝑀𝐶𝑂2 +𝑚𝑙

𝐶𝑂2,∗𝑀𝐶𝑂2𝛻 𝒒𝒈𝜌𝑔 + 𝛻 𝜌𝑙𝑫𝒍𝛻 𝑚𝑙
𝐶𝑂2𝑀𝐶𝑂2  

−𝒒𝒍𝜌𝑙𝑀
𝐶𝑂2 𝑚𝑙

𝐶𝑂2 −𝑚𝑙
𝐶𝑂2,∗ + 𝑄𝑙

𝐶𝑂2 + 𝑇𝑙
𝐶𝑂2   [c] 

where 𝑚𝑙
𝐶𝑂2,∗ is the prescribed concentration of the inflow fluid in the boundaries and 

𝑚𝑙
𝐶𝑂2,∗ = 𝑚𝑙

𝐶𝑂2 in the interior domain. 



Formulation used 

The unknowns for Eq.a, Eq.b, Eq.c chosen are 𝑝𝑙, 𝑆𝑔, 𝑚𝑙
𝐶𝑂2 respectively. A 

conditional kinetic interphase mass transfer is considered. 
 
 

𝑐1 =  
𝑖𝑓( 𝑆𝑔 > 𝑆𝑟,𝑔), 1

𝑖𝑓( 𝑆𝑔 ≤ 𝑆𝑟,𝑔), 0
   𝑐2 =  

𝑖𝑓 𝑚𝑙
𝐶𝑂2 > 𝑚 𝑙

𝐶𝑂2  , 0

𝑖𝑓 𝑚𝑙
𝐶𝑂2 ≤ 𝑚 𝑙

𝐶𝑂2 , 1
 

 

𝑇𝑙
𝐶𝑂2 = 𝜙𝑆𝑙𝜌𝑙𝑘𝑘𝑖𝑛  𝑐1 𝑚𝑙

𝐶𝑂2 −𝑚 𝑙
𝐶𝑂2 + 1 − 𝑐1 𝑐2 𝑚𝑙

𝐶𝑂2 −𝑚 𝑙
𝐶𝑂2  
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Well middle 

200 m 

2000 m 

50 m 

𝑄𝑔
𝐶𝑂2 = 0.3 (𝑘𝑔 ⋅ 𝑠−1) (during 180 days) 

𝜙 0.15 (𝑚3 ⋅ 𝑚−3) 

𝑑𝑙 = 𝑑𝑚 40 (𝑚) 

𝜅 1e-11 (𝑚2) 

𝑝𝑡  1e5 (𝑃𝑎) 

𝜔 2 (−) 

𝑠𝑙
𝑟  0.05 (𝑚3 ⋅ 𝑚−3) 

𝑠𝑔
𝑟  0.1 (𝑚3 ⋅ 𝑚−3) 

𝑚𝑠
𝑁𝑎𝐶𝑙 1 (𝑚𝑜𝑙 ⋅ 𝑘𝑔−1) 

Pumping rate 

Well foot 
Well top 



Results (well foot) 
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Results (well middle) 
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Co2 molality on liquid 

Gas saturation 



Results 

foot 

middle 
 

top 
 
structural 
 

capillary 
 dissolved 

 

structural 
 

capillary 
 dissolved 

 

structural 
 

capillary 
 dissolved 

 



Results 



Results 



Results 



Conclusions 

• Expected Co2 storage systems can be reproduced in a 

model 

• Quantification of this systems is numerically feasible 

• The position of the well in a synclinal formation affects 

the trapping mechanisms. 
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