

Fluid-structure interaction modeling of Air bearing H.R. Javani¹, P. Kagan², F. Huizinga¹
1. ASML, MAOM, De Run, Veldhoven, The Netherlands
2. ASML, MTD, De Run, Veldhoven, The Netherlands

Balance of load with pressure

 $P_{_{Tank}}$

Tilt stiffness

An eccentric load will cause moment which the Air mount should have necessary rotational stiffness to avoid contact and consequently friction.

ASML

Air thin film

1. Flow in the thin film: "Thin-Film Flow, Shell(tffs)"

$$\frac{\partial(\varGamma h)}{\partial t} + \nabla .(h\varGamma v) - \varGamma(v_w \cdot \nabla h_w + v_b \cdot \nabla h_b) = 0$$

1. Flow in the Nozzle: "Edge-ODEs"

2. Structural deformation: "Solid Mechanics"

Solving physics 1 & 2

Solving physics 1 & 2

Air consumption = 1.647 nl/min

ASML

Air bearing FSI in COMSOL (Nozzles)

Results (thin film pressure and flow consumption)

Results (Animated deformation)

Results (minimum gap as a function of moment)

Conclusions

- COMSOL is relatively more flexible than Ansys in modeling Air bearing.
- The computational time is significantly reduced due to the coupled approach.
- Air bearing model is a highly compressible flows which interact with very stiff structures. These types of problems are difficult to solve using the Iterative FSI Coupling.