Incoherent Propagation of Light in Coherent Models

Andrej Čampa, Janez Krč and Marko Topič

University of Ljubljana Faculty of Electrical Engineering Tržaška cesta 25, SI-1000 Ljubljana, Slovenia

Outline

- Introduction
- Incoherent propagation of light
- Thinning down the incoherent layer
- Model
- Results
- Conclusions

Example of a-Si thin-film solar cell structure

Incoherent propagation of light
 Thining down of thick glass layer

 mm range to nm range!

A. Čampa et al.

Incoherent propagation of light

In many optical cases light loses coherence:

- 1. Spatial incoherence
- 2. Spectral incoherence
- 3. Temporal incoherence

Incoherent light does not interfere, we have to eliminate
 constructive and destructive interference in coherent models

Constructive interference

Destructive interference

A. Campa et al.

A. Campa et al.

Incoherent propagation of light

In rigorous simulations interference term of Poynting vector has to be eliminated

Incoherent propagation of light

Two approaches:

- a) Phase matching method
 - the structure needs to be well defined to find the phase shift of the reflected wave

interference term = 0

$$d' = Re[\frac{\frac{\pi}{2} + m\pi - \varphi}{2k}], \qquad m = 0, \pm 1, \pm 2, ...$$

- a) Phase elimination approach
 - the phase is eliminated by two simulation runs
 - more appropriate for structure that are not well defined

interference term (d) – interference term (d') = 0 $d' = d - Re[\frac{\lambda}{4N(\lambda)}]$

*A. Campa et al., "Two approaches for incoherent propagation of light in rigorous numerical simulations," Progress In Electromagnetics Research, Vol. 137, 187-202, 2013.

A. Čampa e	et al.
------------	--------

Thinning down the incoherent layer

*A. Campa et al., "Two approaches for incoherent propagation of light in rigorous numerical simulations," Progress In Electromagnetics Research, Vol. 137, 187-202, 2013.

	-	-	-	-	-	-	-	-	-	-	-
Α.	Ča	amp	oa e	et al						C	юм

Model

Non-conformal growth model

 $g_{\mu c-Si:H} = 0.3$ $g_{Ag, ZnO} = 0.2$

*M. Sever et. al., Combined model of non-conformal layer growth for accurate optical simulation of thin-film silicon solar cells, Sol. energy mater. sol. cells., Vol. 119, 59-66 (2013)

ITO

Model

🖌 🚍 Global Definitions	Falameters
P: Darameters	* Evoressions
, Interpolation 1 (int1)	v c1*D
a 🚺 Model 1 (mod1)	X. 31 F
Definitions	y: s2*P
Geometry 1	z: 1500+lambda/(4*int1(lamb
Parametric Surface 8 (ps8)	2. 1300 Hambda/ (+ Intr(lamb
🍘 Block 1 (<i>blk1</i>)	+ Fosicion
Convert to Solid 1 (csol1)	
Form Union (fin)	Axis
a 🍀 Materials	▼ Rotation Angle
b source (mat3)	- notation/ngic
Ag (mat4)	Rotation: 0
# TCO_ZnO_u_sputtered (mat5)	
i_a_SiH_Prague (mat6)	Advanced Settings
b site n_a_SiH_Prague (mat2)	
b p_a_SiCH_Prague (mat7)	- Output properties
▷ 🏶 ITO_SL (mat8)	Property Var
Glass_prague (mat9)	Refractive index n :
Basic (def)	Refractive index ima ki
a 🍀 Refractive index (rfi) 🛑	Kendedve maex, main kr,
🔩 Interpolation 1 (int1)	
🔩 Interpolation 2 (int2)	
> 🏶 Asahi (mat10)	
Electromagnetic Waves (emw)	
> S Mesh 1	
b 🎬 Study 1	
Results	•

 Expressions x: s1*P y: s2*P z: 1500+lambda/(4*int1(lambda)) Fosition Axis Rotation Angle Rotation: 0 Advanced Settings Output properties Property Var Expression Refractive index, ima ki ; int1(t) Refractive index, ima ki ; int2(t)*10^6/(1000+lambda/(4*int1(lambda)) 	Farameters									
x s1*P y: s2*P z 1500+lambda/(4*int1(lambda)) Fosition Axis Rotation Angle Rotation: 0 Advanced Settings - Output properties Property Var Expression Refractive index n; int1(t) Refractive index, ima ki; int2(t)*10^6/(1000+lambda/(4*int1(lambda)))	▼ Expressions									
y: s2*P z: 1500+lambda/(4*int1(lambda)) > Fosition > Axis > Rotation Angle Rotation: 0 > Advanced Settings - Output properties Property Var Expression Refractive index n; int1(t) Refractive index, ima ki; int2(t)*10^6/(1000+lambda/(4*int1(lambda)))	x: s1*P									
z: 1500+lambda/(4*int1(lambda)) Fosition Axis Rotation Angle Rotation: 0 Advanced Settings Output properties Property Var Expression Refractive index, ima ki ; int1(t) Refractive index, ima ki ; int2(t)*10^6/(1000+lambda/(4*int1(lambda)))	y: s2*P	y: s2*P								
 Fosition Axis Rotation Angle Rotation: 0 Advanced Settings Output properties Property Var Expression Refractive index n; int1(t) Refractive index, ima ki; int2(t)*10^6/(1000+lambda/(4*int1(lambda))) 	z: 1500+lambda/(4*int1([ambda]))							
 Axis Rotation Angle Rotation: 0 Advanced Settings Output properties Property Var Expression Refractive index ima ki ; int1(t) Refractive index, ima ki ; int2(t)*10^6/(1000+lambda/(4*int1(lambda))) 	+ Fosition									
 ▼ Rotation Angle Rotation: 0 > Advanced Settings > Output properties Property Var Expression Refractive index n; int1(t) Refractive index, ima ki; int2(t)*10^6/(1000+lambda/(4*int1(lambda))) 	► Axis									
Rotation: 0 > Advanced Settings - Output properties Property Var Expression Refractive index, ima ki ; int2(t)*10^6/(1000+lambda/(4*int1(lambda)))	▼ Rotation Angle									
• Advanced Settings - Output properties Property Var Expression Refractive index n ; int1(t) Refractive index, ima ki ; int2(t)*10^6/(1000+lambda/(4*int1(lambda)))	Potation: 0									
Advanced Settings Output properties Property Var Expression Refractive index n; int1(t) Refractive index, ima ki; int2(t)*10^6/(1000+lambda/(4*int1(lambda))										
Output properties Property Var Expression Refractive index n; int1(t) Refractive index, ima ki; int2(t)*10^6/(1000+lambda/(4*int1(lambda))	Advanced Settings									
Property Var Expression Refractive index n ; int1(t) Refractive index, ima ki ; int2(t)*10^6/(1000+lambda/(4*int1(lambda))	C. david annual inc									
Property Var Expression Refractive index n ; int1(t) Refractive index, ima ki ; int2(t)*10^6/(1000+lambda/(4*int1(lambda))	– Output properties									
Refractive index, ima ki ; int1(t) Refractive index, ima ki ; int2(t)*10^6/(1000+lambda/(4*int1(lambda))	Property	Var	Expression							
Refractive index, ima ki ; int2(t)*10^6/(1000+lambda/(4*int1(lambda))	Refractive index	n;	int1(t)							
	Refractive index, ima	ki ;	int2(t)*10^6/(1000+lambda/(4*int1(lambda)))							

Realistic optical constants (layers)

A. Čampa et al.

R

Results – thick glass layer

Incident plane wave

Incoherent glass layer 1 mm thick

A. Čampa et al.

Results thin-film amorphous silicon solar cell

Results

Cell made and measured at Inst. of Energy Research (IEK-5) – Photovoltaics, FZJ

A. Čampa et al.

Results

A. Čampa et al.

Conclusions

- Optical simulations including thick incoherent layer were shown
 - a) using phase matching method
 - b) using phase elimination method
 - c) thinning down thick layer
- Results of simulations compared with realized cells of different institutes

Acknowledgments

FP7 Fast Track project (GA No.: 283501)

Accelerated development and prototyping of nano-technologybased high-efficiency thin-film silicon solar modules

Slovenian Research Agency - ARRS

Javna agencija za raziskovalno dejavnost Republike Slovenije

A. Čampa et al.

University of Ljubljana Faculty of Electrical Engineering

Thank you for your attention

University of Ljubljana Faculty of Electrical Engineering

A. Čampa et al.

