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Abstract

Tubes with helically corrugated walls are used in offshore technology for their strength and
flexibility and in heat exchanger technology for their higher rate of heat transfer. The study of a
computational problem with a helical symmetric geometry may be performed in a lower
dimension as is commonly done with cylindrical and spherical symmetric geometries. However,
the resulting equations can become complicated. For CFD problems the symmetry has only been
fully used for study of flow at low Reynolds numbers (Wang 2006, Pozrikidis 2006).
Formulations with full applicability, like turbulent flow, currently make use of a periodic
symmetry group only. This is done by studying a small piece of the tube and applying periodic
boundary conditions (Kim 2000, Pisarenco 2007).

The use of a helical symmetry could be used more efficiently, without generating complicated
equations, by applying only a minimal amount of transformations instead of a full transformation
to helical coordinates. The set of Euclidian coordinates can be retained allowing easy
implementation into computational codes. Only the derivative in the direction of the tube-axis
needs to be rewritten in terms of the derivatives in the transverse plane. Without the derivative in
the direction of the tube-axis the resulting equations are only dependent on two coordinates. See
figure 1 for a schematic representation of the transformation.

As an example the transformation method is applied to the problem of turbulent flow in a
helically symmetric corrugated tube. The k-g turbulent model (Kalitzin 1997, cited in Kalitzin and
Iacarrino 2002) is used to describe a stationary state of the fluid motion. 

The computations are performed using the Weak Form PDE interface of COMSOL
Multiphysics®. Pseudo-time stepping, adaptive mesh refinement and a sweep analysis of the
pressure drop parameter were used to improve stability of convergence, which was difficult at
high Reynolds numbers and very fine mesh size. 

The friction factor from the model is plotted in a moody chart. At low Reynolds numbers (Re <
100) the friction factor is related to 1/Re but unlike non corrugated smooth tubes the friction is
higher. At high Reynolds numbers (Re > 1000) the friction factor can be related to the,
experimental, Colebrook Equation. However, the exact relation does not depend only on
roughness but also on the pitch angle and number of corrugations. At intermediate Reynolds
numbers (100 < Re < 1000) the computational analysis shows a typical transition that is in
agreement with experimental data from literature (Garcia et al. 2012) and initial experiments in our



own lab.

This model is very efficient and proofs to be promising for further analysis of a full range of
dimensionless parameters describing the corrugation geometry as well as studying differences
of corrugations shapes. It is also desirable to include heat transfer into the two dimensional
analysis but this may be more difficult since the temperature distribution along a tube is not
constant and hence the solution has no helical symmetry.
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Figures used in the abstract

Figure 1: The transformation rule is found using the symmetric property v^α(x^β) =
T^α_λv^λ(S^γ_β x^β) where T^α_λ and S^γ_β are transformation matrixes that rotate the
coordinates and vectors. The solution of the vector v^α in point x^β is related to the solution of
the vector v^λ in point x^γ. By transforming the point x^β to x^γ we find v^λ from which we
calculate v^α. Applying the chain rule for derivatives we find the transformation rule that
transforms the derivatives in the direction of the tube axis.


