Development of Stress Relief Suspensions for Micro-Machined Silicon Membranes HOCHSCHULE FURTWANGEN Wolfgang Kronast, Ulrich Mescheder, Bernhard Müller Furtwangen University, IAF, Robert-Gerwig Platz 1, 78120 Furtwangen, Germany

Introduction:

Micro machined Silicon membranes manufactured in Silicon on Insulator (SOI) technology often suffer from buckling caused by internal stress of the material. A new concept of a stress relief structure used for dynamically activated micro mirrors, as seen in Fig. 1, has been developed. It reduces the induced deformation leads and stress to

substantially flat mirrors of high optical quality [1,2].

Fig. 1. Schematic (left) and fabricated micro mirror device (right)

Fig. 2. : COMSOL 3D model of the mirror chip with the tangential suspension beams

Comparison with measurements:

Conventional rigidly clamped membrane: Large distortion $\Delta z = 335$ nm (simulated for an pre-stress of $\sigma = -1$ MPa) and $\Delta z = 340$ nm measured.

A special tangential beam suspension allows an in-plane expansion or contraction of the membrane proportional to its inherent compressive or tensile stress (Fig. 2).

Computational Methods:

- 3D simulation using the MEMS Tool of COMSOL Multiphysics V4.2.
- Influence of material pre-stress of SOI wafer by use of the initial stress matrix S_0 in the structural mechanics interface.

Geometry:

Membrane radius: 3 mm, 10 µm thick L/W/H: 1800µm/100µm/10µm Beams: 8 mm x 8 mm Chip size:

New tangential beam suspended membrane: z-displacement $\Delta z = 53$ nm (simulated); $\sigma = -1$ MPa) and $\Delta z = 54$ nm (measured).

Conclusions:

FEM simulation together with measurements concept of stress relief novel the prove

FEM Results:

- In-plane expansion (xy displacement) of the membrane of 327 nm enabled by the weak flexibility of the suspension beams (Fig. 3).
- Stress relief of compressive pre-stress $\sigma = -20$ MPa resulting in a flat membrane with only $\Delta z = 82$ nm out of plane distortion (Fig. 4).

References:

- W. Kronast, U. Mescheder, B. Müller, R. Huster, "Development of a 1. focusing micromirror device with an in-plane stress relief structure in SOI technology", Proc. of SPIE, MOEMS and Miniaturized Systems XII, Vol. 8616, (2013)
- W. Kronast, U. Mescheder, R. Huster; Stressuntersuchung und 2. Optimierung von SOI basierten Membranen; Mikrosystemtechnik Kongress 2009, Berlin, Proceedings pp. 590-593, ISBN 978-3-8007-3183-1 © VDE VERLAG GMBH • Berlin • Offenbach

Excerpt from the Proceedings of the 2013 COMSOL Conference in Rotterdam