

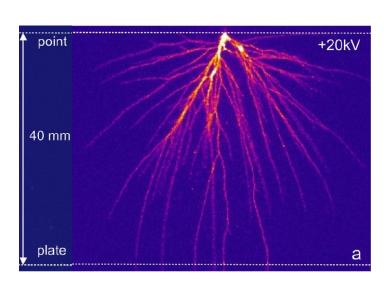
Propagation of Cathode-Directed Streamer Discharges in Air

Yuriy Serdyuk

Associate Professor
High Voltage Engineering
Chalmers University of Technology
SE-41296 Gothenburg, Sweden
E-mail: yuriy.serdyuk@chalmers.se

Outline

- Introduction
- Drift-diffusion model of streamer discharges in air
- Model implementation
- Simulations of positive streamers
- Concluding remarks


Electrical gas discharges

- Phenomena associated with transport of electrical charges through neutral gas due to applied electric fields.
- Transport processes are usually strongly dominated by space charge effects.
- Examples of non-thermal discharges: electron avalanches, streamers, coronas, stationary glow discharges, dielectric barrier discharges (DBD).
- A streamer discharge is a self-sustained ionization wave propagating in neutral gas.

Positive streamers in air

- Streamers develop as thin plasma channels sustained by production of electrons in the strong field region at the head.
- Depending upon conditions (pressure, length, power input, overvoltage, etc.) they may experience branching.

T. M. P. Briels et al.," Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy", J. Phys. D: Appl. Phys., 2008, **41**, 234004.

Transition from glow to streamer: needle-plane gap, length 20mm, $U_{app} = +21 \text{ kV}$, exposure 5 s.

T. Czech et al., "Optical emission spectroscopy of point-plane corona and back-corona discharges in air", Eur. Phys. J. D, 2011, **65**, 459–474

Drift-diffusion model of air discharges

- Charge carriers are represented as electronic and ionic "fluids" and are characterized by averaged properties.
- Mass conservation equations for electrons and ions:

$$\frac{\partial n_e}{\partial t} / \frac{\partial t}{\partial t} + \nabla \cdot (-n_e \mu_e \mathbf{E} - D_e \nabla n_e) = S_e(E)$$

$$\frac{\partial n_p}{\partial t} / \frac{\partial t}{\partial t} + \nabla \cdot (n_p \mu_p \mathbf{E} - D_p \nabla n_p) = S_p(E)$$

$$\frac{\partial n_n}{\partial t} / \frac{\partial t}{\partial t} + \nabla \cdot (-n_n \mu_n \mathbf{E} - D_n \nabla n_n) = S_n(E)$$

• Poisson equation for electric potential ϕ :

$$\nabla \cdot (\varepsilon_0 \varepsilon \nabla \phi) = -q(n_p - n_e - n_n), \quad \mathbf{E} = -\nabla \phi$$

 Appropriate (problem dependent) boundary and initial conditions are to be provided for all the PDEs.

Incorporating photoionization in air

Mechanism:

$$e + N_2 \rightarrow N_2^* + e \Rightarrow N_2^* \rightarrow N_2 + h\nu(98 \div 102.5nm) \Rightarrow O_2 + h\nu \rightarrow O_2^+ + e$$

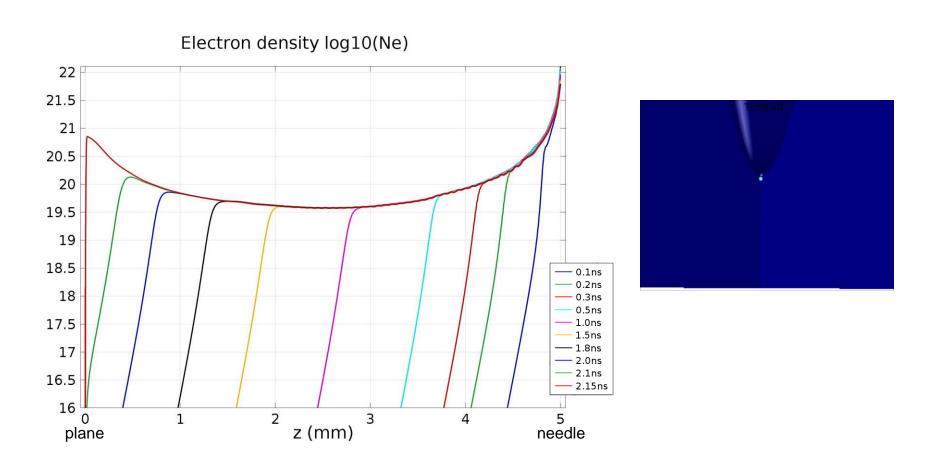
- Non-local ionization: electrons are created by photons at a distance from a source of radiation.
- The photoionization rate is included as $S_{ph}(\mathbf{r}) = \sum_{j} S_{ph}^{j}(\mathbf{r})$ where the terms $S_{ph}^{j}(\mathbf{r})$ satisfy Helmholtz equations^(*)

$$\nabla^2 S_{ph}^{j}(\mathbf{r}) - (\lambda_j p_{O_2})^2 S_{ph}^{j}(\mathbf{r}) = -A_j p_{O_2}^2 I(\mathbf{r})$$

- Two exponential fit is used with the parameters λ_j and A_j .
- (*) A. Bourdon et al., "Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations", Plasma Sources Sci. Technol., 2007, **16**, 656-78.

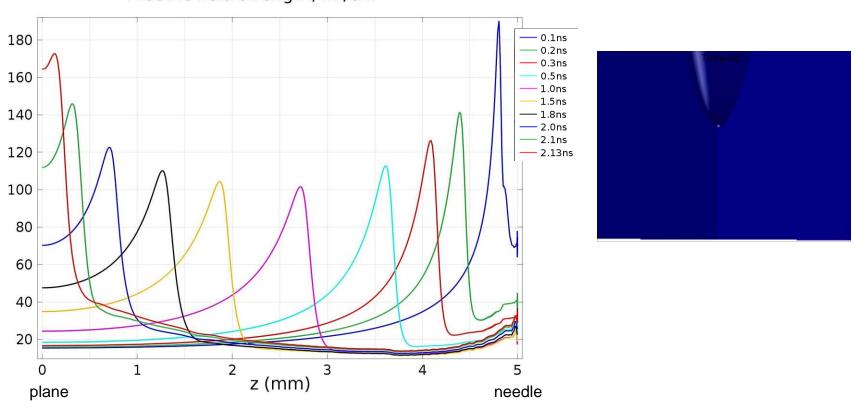
Model implementation

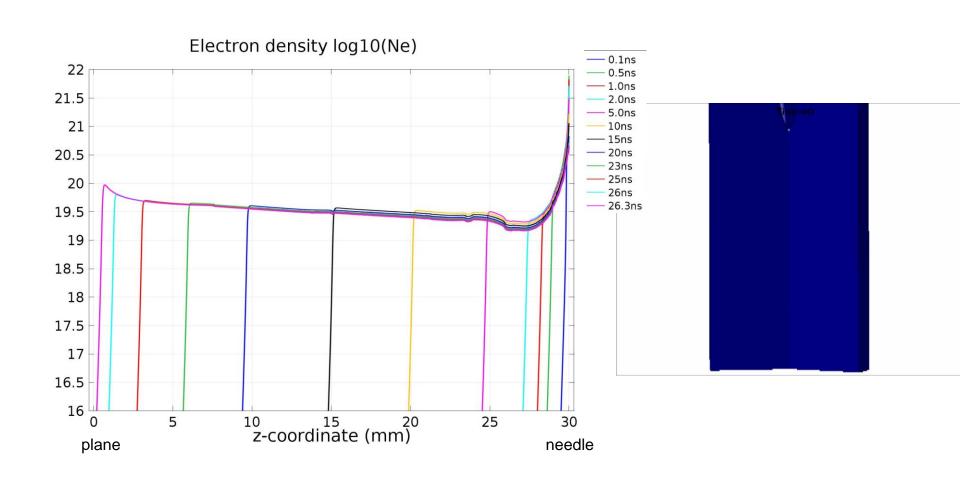
- Set of PDEs: three drift-diffusion, Poisson's, two Helmholtz.
- Source term stabilization is implemented for the DD PDEs.
- Mesh size at streamer front is ~10 μm, within the plasma channel ~70 μm and larger in the rest of the domain.
- The mesh was refined manually.
- Solver: direct, segregated (two steps) with continues Jacobian update.
- Time stepping: BDF with variable order.

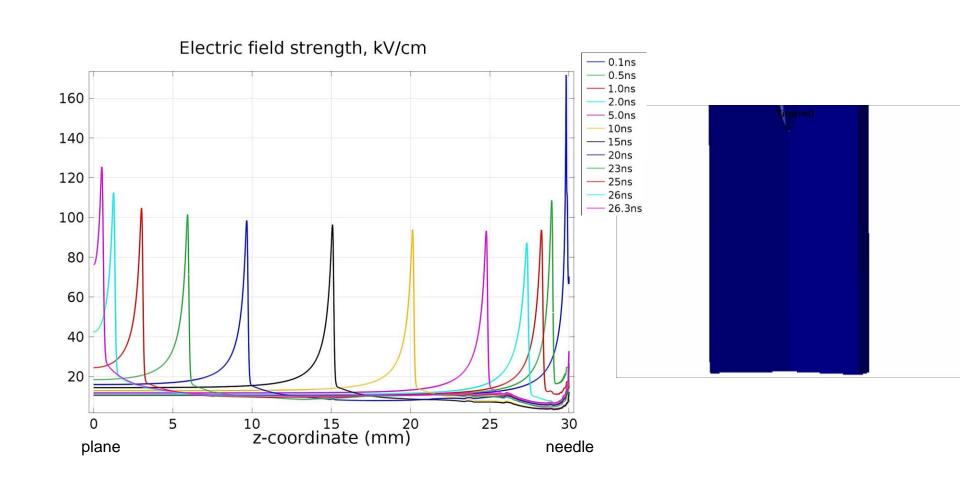


Simulations of streamers in air

- Hyperbolic needle-plane electrodes, pressure 760 Torr, temperature 293 K, voltage rise time 0.1 ns.
- A single discharge is considered and the model is implemented in 2D utilizing axial symmetry.
- The discharge is initiated from a seeding charge spot of Gaussian shape ($n_e = n_p = 10^{20} \text{ m}^{-3}$, $\sigma = 30 \text{ }\mu\text{m}$) located at 0.1 mm from the needle tip.
- Drift of ions is neglected due to the short duration of the discharge.
- Two study cases:
 - gap length 5 mm (applied voltage +15 kV dc)
 - gap length 30 mm (voltage +40 kV dc).

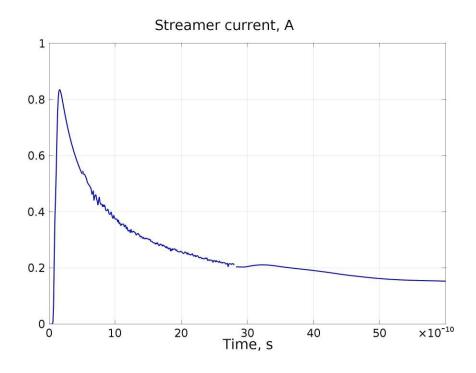

Short streamer: dynamics of electrons


Short streamer: electric field



Long streamer: dynamics of electrons

Long streamer: electric field



Calculated discharge current

Streamer 5 mm

Streamer current, A 1.2 1.2 1.2 0.8 0.6 0.4 0.2 0.7 Time, s

Streamer 30 mm

Calculated parameters of streamers

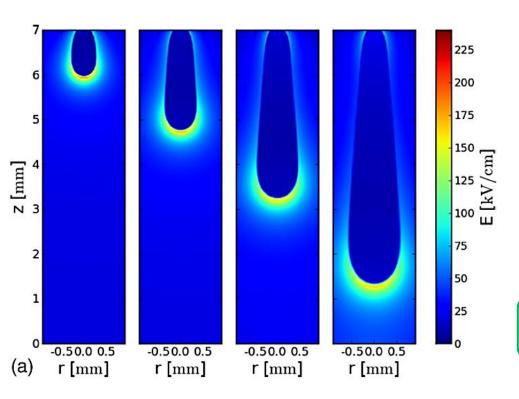
Velocity at stable propagation:

5 mm streamer - ~1.8-10⁶ m/s

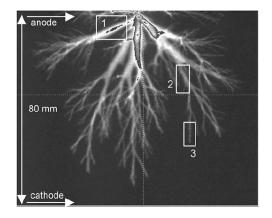
30 mm streamer - $\sim 1.0 \cdot 10^6$ m/s

Channel radius at stable propagation :

5 mm streamer – 600-700 µm (strongest field)


400-500 μ m (strongest S_{ph})

30 mm streamer – 500-600 µm (strongest field)


200-300 μ m (strongest S_{ph})

Typical parameters of streamers

A. Luque et al., "Positive and negative streamers in ambient air: modelling evolution and velocities", J. Phys. D: Appl. Phys. **41** (2008) 234005.

- Type 1 streamers are very thick with a diameter of about 2.5 mm; their velocity is just over 1 mm ns⁻¹ and they carry currents of up to 25 A.
- Type 2 streamers are thick with a diameter of about 1.2 mm, a velocity of 0.5 mm ns⁻¹ and currents of the order of 1 A.
- Type 3 streamers are thin; their diameter is $0.2 \,\mathrm{mm}$ which can only be properly determined by zooming in sufficiently with the camera (cf table 1), their velocity is $\sim 0.1 \,\mathrm{mm}\,\mathrm{ns}^{-1}$ and their current $\sim 10 \,\mathrm{mA}$.

T. M. P. Briels et al., "Circuit dependence of the diameter of pulsed positive streamers in air", J. Phys. D: Appl. Phys. **39** (2006) 5201–5210

Concluding remarks

- The drift-diffusion (fluid) model of non-thermal discharges in air has been implemented.
- Lessons learnt: meshing, numerical stability, setting proper boundary conditions, optimizing solver properties, etc.
- "Wish list":
 - implementation of a moving frame with a fine mesh for resolving gradients at streamer front;
 - implementation of a high order numerical scheme or technique allowing for flux correction;
 - implementation of finite volume approach for drift-diffusion equations (to preserve positivity).

Thank you for your attention!!